414
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Characterizing vegetation and return periods in avalanche paths using lidar and aerial imagery

ORCID Icon, , , &
Article: 2310333 | Received 14 Apr 2023, Accepted 15 Jan 2024, Published online: 01 Mar 2024

References

  • Bartelt, P., and V. Stockli. 2001. The influence of tree and branch fracture, overturning and debris entrainment on snow avalanche flow. Annals of Glaciology 32: 209–22. doi:10.3189/172756401781819544.
  • Bebi, P., D. Kulakowski, and C. Rixen. 2009. Snow avalanche disturbances in forest ecosystems-state of research and implications for management. Forest Ecology and Management 257, no. 9: 1883–92.
  • Brandtberg, T., T. A. Warner, R. E. Landenberger, and J. B. McGraw. 2003. Detection and analysis of individual leaf-off tree crowns in small footprint, high sampling density lidar data from the eastern deciduous forest in North America. Remote Sensing of Environment 85, no. 3: 290–303. doi:10.1016/S0034-4257(03)00008-7.
  • Breiman, L. 2001. Random forests. Machine Learning 45: 5–32. doi:10.1023/A:1010933404324.
  • Brožová, N., J.-T. Fischer, Y. Bühler, P. Bartelt, and P. Bebi. 2020. Determining forest parameters for avalanche simulation using remote sensing data. Cold Regions Science and Technology, 172: 102976. doi:10.1016/j.coldregions.2019.102976.
  • Bühler, Y., D. von Rickenbach, A. Stoffel, S. Margreth, L. Stoffel, and M. Christen. 2018. Automated snow avalanche release area delineation – Validation of existing algorithms and proposition of a new object-based approach for large-scale hazard indication mapping. Natural Hazards and Earth System Sciences 18, no. 12: 3235–51. doi:10.5194/nhess-18-3235-2018.
  • Burlington Northern Santa Fe Avalanche Safety Program. 2021. Avalanche Alley: Avalanche and weather data in John F. Stevens Canyon, Montana. https://avalanchealley.com.
  • Burrows, C. J., and V. L. Burrows. 1976. Procedures for the study of snow avalanche chronology using growth layers of woody plants. Occasional Paper No. 23. Boulder: Institute of Arctic and Alpine Research, Universtiy of Colorado.
  • Butler, D. R. 1979. Snow avalanche path terrain and vegetation, Glacier National Park, Montana. Arctic and Alpine Research 11, no. 1: 17–32. doi:10.2307/1550456.
  • Butler, D. R., and G. P. Malanson. 1985. A history of high-magnitude snow avalanches, southern Glacier National Park, Montana, U.S.A. Mountain Research and Development 5, no. 2: 175–82. doi:10.2307/3673256.
  • Canadian Avalanche Association. 2016. Technical aspects of snow avalanche risk management ─ resources and guidelines for avalanche practitioners in Canada, eds. C. Campbell, S. Conger, B. Gould, P. Haegeli, B. Jamieson, and G. Statham. Revelstoke, BC: Canadian Avalanche Association.
  • Corona, C., J. Lopez Saez, M. Stoffel, M. Bonnefoy, D. Richard, L. Astrade, and F. Berger. 2012. How much of the real avalanche activity can be captured with tree rings? An evaluation of classic dendrogeomorphic approaches and comparison with historical archives. Cold Regions Science and Technology 74–75: 31–42. doi:10.1016/j.coldregions.2012.01.003.
  • Devore, J., and R. Peck. 2005. Statistics - the exploration and analysis of data, 766. Belmont: Brooks/ Cole.
  • Dubayah, R. O., and J. B. Drake. 2000. Lidar remote sensing for forestry. Journal of Forestry 98, no. 6: 44–6.
  • Erschbamer, B. 1989. Vegetation on avalanche paths in the Alps. Vegetatio 80: 139–46. doi:10.1007/BF00048037.
  • ESRI. 2021. ArcGIS. 10.6.1. Redlands, CA: Environmental Systems Research Institute.
  • Feistl, T., P. Bebi, and P. Bartelt. 2013. The role of slope angle, ground roughness and stauchwall strength in the formation of glide-snow avalanches in forest gaps. In Proceedings of the 2013 international snow science workshop, ed. F. Naaim-Bouvet, Y. Durand, and R. Lambert, 760–5. Grenoble, France.
  • Feistl, T., P. Bebi, M. Teich, Y. Buhler, M. Christen, K. Thuro, and P. Bartelt. 2014. Observations and modeling of the braking effect of forests on small and medium avalanches. Journal of Glaciology 60, no. 219: 124–38. doi:10.3189/2014JoG13J055.
  • Gaume, J., J. Schweizer, A. Herwijnen, G. Chambon, B. Reuter, N. Eckert, and M. Naaim. 2014. Evaluation of slope stability with respect to snowpack spatial variability. Journal of Geophysical Research: Earth Surface 119, no. 9: 1783–99.
  • Grissino-Mayer, H. 2001. Evaluating crossdating accuracy: A manual and tutorial for the computer program COFECHA. Tree-Ring Research 57, no. 2: 205–21.
  • Hesdstrom, N. R., and J. W. Pomeroy. 1998. Measurements and modelling of snow interception in the boreal forest. Hydrological Processes 12: 1611–25. doi:10.1002/(SICI)1099-1085(199808/09)12:10/11<1611::AID-HYP684>3.0.CO;2-4.
  • Holmes, R. L. 1983. Analysis of tree rings and fire scars to establish fire history. Tree-Ring Bulletin 43: 51–67.
  • Holmgren, J., and A. Persson. 2004. Identifying species of individual trees using airborne laser scanner. Remote Sensing of Environment 90, no. 4: 415–23. doi:10.1016/S0034-4257(03)00140-8.
  • Holmgren, J., A. Persson, and U. Soderman. 2008. Species identification of individual trees by combining high resolution LIDAR data with multi-spectral images. International Journal of Remote Sensing 29, no. 5: 1537–52. doi:10.1080/01431160701736471.
  • Hyyppä, J., O. Kelle, M. Lehikoinen, and M. A. Inkinen. 2001. A segmentation-based method to retrieve stem volume estimates from 3-D tree height models produced by laser scanners. IEEE Transactions on Geoscience and Remote Sensing 39: 969–75.
  • International Tree Ring Data Bank. 2020. International Tree Ring Data Bank (ITRDB). https://www.ncei.noaa.gov/products/paleoclimatology/tree-ring.
  • Johnson, E. A. 1987. The relative importance of snow avalanche disturbance and thinning on canopy plant popluations. Ecology 68, no. 1: 43–53. doi:10.2307/1938803.
  • Kajimoto, T., H. Daimaru, T. Okamoto, T. Otani, and H. Onodera. 2004. Effects of snow avalanche disturbance on regeneration of subalpine Abies mariesii forest, Northern Japan. Arctic, Antarctic, and Alpine Research 36, no. 4: 436–554. doi:10.1657/1523-0430(2004)036[0436:EOSADO]2.0.CO;2.
  • Khosravipour, A., A. K. Skidmore, M. Isenburg, T. J. Wang, and Y. A. Hussin. 2014. Generating Pit-free Canopy height models from airborne lidar. Photogrammetric Engineering & Remote Sensing 80, no. 9: 863–72. doi:10.14358/PERS.80.9.863.
  • Krajick, K. 1998. Animals thrive in an avalanche’s wake. Science 279, no. 5358: 11853. doi:10.1126/science.279.5358.1853.
  • Kuhn, M., J. Wing, S. Weston, A. Williams, C. Keefer, A. Engelhardt, T. Cooper, et al., 2019. caret: Classification and regression training. R package version 6.0-84. https://CRAN.R-project.org/package=caret.
  • Kulakowski, D., C. Rixen, and P. Bebi. 2006. Changes in forest structure and in the relative importance of climatic stress as a result of suppression of avalanche disturbances. Forest Ecology and Management 223: 66–74. doi:10.1016/j.foreco.2005.10.058.
  • Laes, D., S. E. Reutebuch, R. J. McGaughey, and B. Metchell. 2011. Guidelines to estimate forest inventory parameters from lidar and field plot data. U.S. Forest Service.
  • Larsen, H. T., J. Hendrikx, M. S. Slåtten, and R. V. Engeset. 2020. Developing nationwide avalanche terrain maps for Norway. Natural Hazards 103, no. 3: 2829–47. doi:10.1007/s11069-020-04104-7.
  • Leitinger, G., P. Höller, E. Tasser, J. Walde, and U. Tappeiner. 2008. Development and validation of a spatial snow-glide model. Ecological Modelling 211, no. 3–4: 363–74. doi:10.1016/j.ecolmodel.2007.09.015.
  • Lied, K., and K. Bakkehøi. 1980. Empirical calculations of snow-avalanche run-out distance based on topographic parameters. Journal of Glaciology 26, no. 94: 165–77. doi:10.3189/S0022143000010704.
  • Lillesand, T. M., and R. W. Kiefer. 2000. Remote sensing and image interpretation. Vol. 4. New York, NY: Wiley & Sons.
  • Mace, R. D., and J. S. Waller. 1997. Spatial and temporal interaction of male and female grizzly bears in Northwestern Montana. Journal of Wildlife Management 61, no. 1: 39–52. doi:10.2307/3802412.
  • Malanson, G. P., and D. R. Butler. 1984. Transverse pattern of vegetation on avalanche paths in the northern Rocky Mountains, Montana. Great Basin Naturalist 44, no. 3: 453–7.
  • Malanson, G. P., and D. R. Butler. 1986. Floristic patterns on avalanche paths in the Northern Rocky Mountains, USA. Physical Geography 7, no. 3: 231–8. doi:10.1080/02723646.1986.10642293.
  • McClung, D. M. 2005. Risk-based definition of zones for land-use planning in snow avalanche terrain. Canadian Geotechnical Journal 42, no. 4: 1030–8. doi:10.1139/t05-041.
  • McClung, D. M., and P. Schaerer. 2006. The avalanche handbook. Seattle, WA: Mountaineers Books.
  • McCollister, C. M., R. H. Comey. 2009. Using LiDAR (Light distancing and ranging) data to more accurately describe avalanche terrain. In Proceedings of the 2009 International Snow Science Workshop, ed. J. Schweizer and A. van Herwijnen, 463–7, September 27–October 2. Davos, Switzerland.
  • Mears, A. I. 1989. Regional comparisons of avalanche-profile and runout data. Arctic and Alpine Research 21, no. 3: 283–7. doi:10.2307/1551567.
  • Meseșan, F., I. G. Gavrilă, and O. T. Pop. 2018. Calculating snow-avalanche return period from tree-ring data. Natural Hazards 94, no. 3: 1081–98. doi:10.1007/s11069-018-3457-y.
  • Meyer, F., and S. Beucher. 1990. Morphological segmentation. Journal of Visual Communication and Image Representation 1, no. 1: 21–46. doi:10.1016/1047-3203(90)90014-M.
  • Mock, C. J., and K. W. Birkeland. 2000. Snow avalanche climatology of the western United States mountain ranges. Bulletin of the American Meteorological Society 81, no. 10: 2367–92. doi:10.1175/1520-0477(2000)081<2367:SACOTW>2.3.CO;2.
  • Molotch, N., P. Blanken, M. Williams, A. Turnipseed, R. Monson, and S. Margulis. 2007. Estimating sublimation of intercepted and sub-canopy snow using eddy covariance systems. Hydrological Processes 21: 1567–75. doi:10.1002/hyp.6719.
  • Musselmann, K. N., N. P. Molotch, and P. D. Brooks. 2008. Effects of vegetation on snow accumulation and ablation in a mid-latitude sub-alpine forest. Hydrological Processes 22: 2767–76. doi:10.1002/hyp.7050.
  • Newesely, C., E. Tasser, P. Spadinger, and A. Cernusca. 2000. Effects of land-use changes on snow gliding processes in alpine ecosystems. Basic and Applied Ecology 1, no. 1: 61–7. doi:10.1078/1439-1791-00009.
  • Patten, R. S., and D. H. Knight. 1994. Snow avalanches and vegetation pattern in Cascade Canyon, Grand Teton National Park, Wyoming, USA. Arctic and Alpine Research 26, no. 1: 35–41. doi:10.2307/1551874.
  • Peitzsch, E. H., J. Hendrikx, and D. B. Fagre. 2015. Terrain parameters of glide snow avalanches and a simple spatial glide snow avalanche model. Cold Regions Science and Technology 120: 237–50. doi:10.1016/j.coldregions.2015.08.002.
  • Peitzsch, E. H., J. Hendrikx, D. K. Stahle, G. T. Pederson, K. W. Birkeland, and D. B. Fagre. 2021. A regional spatiotemporal analysis of large magnitude snow avalanches using tree rings. Natural Hazards and Earth System Sciences 21, no. 2: 533–57. doi:10.5194/nhess-21-533-2021.
  • Peitzsch, E. H., D. K. Stahle, D. B. Fagre, A. M. Clark, G. T. Pederson, J. Hendrikx, and K. W. Birkeland. 2019. Tree ring dataset for a regional avalanche chronology in northwest Montana, 1636–2017. U.S. Geological Survey data release. doi:10.5066/P9TLHZAI.
  • Persson, A., J. Holmgren, and U. Soderman. 2002. Detecting and measuring individual trees using an airborne laser scanner. Photogrammetric Engineering & Remote Sensing 68, no. 9: 925–32.
  • Racine, E. B., N. C. Coops, B. St-Onge, and J. Bégin. 2014. Estimating forest stand age from LiDAR-derived predictors and nearest neighbor imputation. Forest Science 60, no. 1: 128–36. doi:10.5849/forsci.12-088.
  • R Core Team. 2018. R foundation for statistical computing. Vienna, Austria: R: A Language and Environment for Statistical Computing. https://www.R-project.org.
  • Reardon, B. A., G. T. Pederson, C. J. Caruso, and D. B. Fagre. 2008. Spatial reconstructions and comparisons of historic snow avalanche frequency and extent using tree rings in Glacier National Park, Montana, U.S.A. Arctic, Antarctic, and Alpine Research 40, no. 1: 148–60. doi:10.1657/1523-0430(06-069)[REARDON]2.0.CO;2.
  • Rixen, C., S. Haag, D. Kulakowski, and P. Bebi. 2007. Natural avalanche disturbance shapes plant diversity and species composition in subalpine forest belt. Journal of Vegetation Science 18: 735–A7. doi:10.1111/j.1654-1103.2007.tb02588.x.
  • Roussel, J.-R., and D. Auty. 2019. lidR: Airborne LiDAR data manipulation and visualization for foresty applications. R package version 2.1.4. https://CRAN.R-project.org/package=lidR.
  • Silva, C. A., N. L. Crookston, A. T. Hudak, L. A. Vierling, C. Klauberg, and A. Cardil. 2017. rLiDAR: LiDAR data processing and visualization. R package version 0.1.1. https://CRAN.R-project.org/package=rLiDAR.
  • Solberg, S., E. Naesset, and O. M. Bollandsas. 2006. Single tree segmentation using airborne laser scanner data in a structurally heterogeneous spruce forest. Photogrammetric Engineering & Remote Sensing 72, no. 12: 1369–78. doi:10.14358/PERS.72.12.1369.
  • Stähli, M., T. Jonas, and D. Gustafsson. 2009. The role of snow interception in winter-time radiation processes of a coniferous sub-alpine forest. Hydrological Processes 23, no. 17: 2498–512. doi:10.1002/hyp.7180.
  • Statham, G., B. McMahon, and I. Tomm, 2006. The Avalanche terrain exposure scale. Proceedings of the 2006 International Snow Science Workshop, 491–7, October 1–6, Jackson, WY.
  • Stokes, M. A., and T. L. Smiley. 1996. An introduction to tree-ring dating. Tucson: The University of Arizona Press.
  • Sykes, J., P. Haegeli, and Y. Bühler. 2022. Automated snow avalanche release area delineation in data-sparse, remote, and forested regions. Natural Hazards and Earth System Sciences 22, no. 10: 3247–70. doi:10.5194/nhess-22-3247-2022.
  • Teich, M., P. Bartelt, A. Grêt-Regamey, and P. Bebi. 2012. Snow avalanches in forested terrain: Influence of forest parameters, topography, and avalanche characteristics on runout distance. Arctic, Antarctic, and Alpine Research 44, no. 4: 509–19. doi:10.1657/1938-4246-44.4.509.
  • Teich, M., J. T. Fischer, T. Feistl, P. Bebi, M. Christen, and A. Gret-Regamey. 2014. Computational snow avalanche simulation in forested terrain. Natural Hazards and Earth System Sciences 14, no. 8: 2233–48. doi:10.5194/nhess-14-2233-2014.
  • U.S. Department of Agriculture, Natural Resource Conservation Service. 2020a. National agricultural imagery program. https://naip-usdaonline.hub.arcgis.com/.
  • U.S. Department of Agriculture, Natural Resources Conservation Service. 2020b. Snow Telemetry (SNOTEL) and snow course data and products. https://www.wcc.nrcs.usda.gov/snow/.
  • U.S. Geological Survey. 2017. Glacial National Park QLI LiDAR. https://rockyweb.usgs.gov/vdelivery/Datasets/Staged/Elevation/LPC/Projects/MT_Glacier_NP_LiDAR_2016_D16/MT_GlacierNP_2016/
  • Veatch, W., P. D. Brooks, J. R. Gustafson, and N. P. Molotch. 2009. Quantifying the effects of forest canopy cover on net snow accumulation at a continental, mid-latitude site. Ecohydrology 2: 115–28. doi:10.1002/eco.45.
  • Veblen, T. T., K. S. Hadley, E. M. Nel, T. Kitzberger, M. Reid, and R. Villalba. 1994. Disturbance regime and disturbance interactions in a Rocky Mountain subalpine forest. Journal of Ecology 82: 125–35. doi:10.2307/2261392.
  • Waller, J. S., and R. D. Mace. 1997. Grizzly bear habitat selection in the Swan Mountains, Montana. Journal of Wildlife Management 61, no. 4: 1032–9. doi:10.2307/3802100.
  • Walsh, S. J., D. R. Butler, T. R. Allen, and G. P. Malanson. 1994. Influence of snow patterns and snow avalanches on the alpine treeline ecotone. Journal of Vegetation Science 5: 657–72. doi:10.2307/3235881.
  • Walsh, S. J., D. J. Weiss, D. R. Butler, and G. P. Malanson. 2004. An assessment of snow avalanche paths and forest dynamics using Ikonos satellite data. Geocarto International 19, no. 2: 85–93. doi:10.1080/10106040408542308.
  • Wulder, M. A., J. C. White, R. F. Nelson, E. Næsset, H. O. Ørka, N. C. Coops, T. Hilker, C. W. Bater, and T. Gobakken. 2012. Lidar sampling for large-area forest characterization: A review. Remote Sensing of Environment 121: 196–209. doi:10.1016/j.rse.2012.02.001.