342
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Remarks and advice to the study of early arthropod succession near melting glaciers

ORCID Icon, ORCID Icon & ORCID Icon
Article: 2335687 | Received 14 Mar 2023, Accepted 24 Mar 2024, Published online: 18 Apr 2024

References

  • Andersen, J., and P. Arneberg. 2016. Hand collection as a method for assessing the community structure of carabid beetles. Pedobiologia 59, no. 3: 73–15. doi:10.1016/j.pedobi.2016.02.003.
  • Badejo, M.A. 1982. The distribution and abundance of soil microarthropods in three different habitats at the University of Ife Campus. M.Sc. Thesis, 1970. Department of Zoology, University of Ife.
  • Bahrndorff, S., V. Loeschcke, C. Pertoldi, C. Beier, and M. Holmstrup. 2009. The rapid cold hardening response of Collembola is influenced by thermal variability of the habitat. Functional Ecology 23, no. 2: 340–7. doi:10.1111/j.1365-2435.2008.01503.x.
  • Bardgett, R.D., A. Richter, R. Bol, M.H. Garnett, R. Bäumler, X. Xingliang, E. Lopez-Capel, et al. 2007. Heterotrophic microbial communities use ancient carbon following glacial retreat. Biology Letters 3: 487–90. doi:10.1098/rsbl.2007.0242.
  • Beet, C.R., I.D. Hogg, S.C. Cary, I.R. McDonald, and B.J. Sinclair. 2022. The resilience of Polar Collembola (Springtails) in a changing climate. Current Research in Insect Science 2: 100046. doi:10.1016/j.cris.2022.100046.
  • Bernasconi, M., M.S. Borgatti, M. Tognetti, B. Valle, M. Caccianiga, M. Gobbi, and C. Casarotto. 2019. Checklist ragionata della flora e degli artropodi (Coleoptera: Carabidae e Arachnida: Araneae) dei ghiacciai Centrale e Occidentale del Sorapiss (Dolomiti d’Ampezzo), Frammenti, 49–65. Feltre (Italy): Parco Nazionale delle Dolomiti Bellunesi.
  • Birkemoe, T., and T. Liengen. 2000. Does collembolan grazing influence nitrogen fixation by cyanobacteria in the high Arctic? Polar Biology 23: 589–92. doi:10.1007/s003000000133.
  • Bödvarsson, H. 1961. Beitrag zur Kenntnis der südschwedischen bodenlebenden Collembolen. Opuscula Entomologica 26: 178–98.
  • Bosson, J.B., M. Huss, S. Cauvy-Fraunié, J.C. Clément, G. Costes, M. Fischer, J. Poulenard, and F. Arthaud. 2023. Future emergence of new ecosystems caused by glacial retreat. Nature 620: 562–9. doi:10.1038/s41586-023-06302-2.
  • Brambilla, M., and M. Gobbi. 2014. A century of chasing the ice: Delayed colonisation of ice-free sites by ground beetles along glacier forelands in the Alps. Ecography 37: 33–42. doi:10.1111/j.1600-0587.2013.00263.x.
  • Branda, E., B. Turchetti, G. Diolaiuti, M. Pecci, C. Smiraglia, and P. Buzzini. 2010. Yeast and yeast-like diversity in the southernmost glacier of Europe (Calderone Glacier, Apennines, Italy): Yeast diversity in the European southernmost glacier. FEMS Microbiology Ecology 72: 354–69. doi:10.1111/j.1574-6941.2010.00864.x.
  • Bråten, A.T., D. Flø, S. Hågvar, O. Hanssen, C.E. Mong, and K. Aakra. 2012. Primary succession of surface active beetles and spiders in an alpine glacier foreland, central south Norway. Arctic, Antarctic, and Alpine Research 44: 2–15. doi:10.1657/1938-4246-44.1.2.
  • Brown, G.R., and I.M. Matthews. 2016. A review of extensive variation in the design of pitfall traps and a proposal for a standard pitfall trap design for monitoring ground-active arthropod biodiversity. Ecology and Evolution 6, no. 12: 3953–64. doi:10.1002/ece3.2176.
  • Cauvy-Fraunié, S., and O. Dangles. 2019. A global synthesis of biodiversity responses to glacier retreat. Nature Ecology and Evolution 3: 1675–85. doi:10.1038/s41559-019-1042-8.
  • Connell, J.H., and R.O. Slatyer. 1977. Mechanisms of succession in natural communities and their role in community stability and organization. The American Naturalist 111: 1119–44. doi:10.1086/283241.
  • Cook, J., A. Edwards, N. Takeuchi, and T. Irvine-Fynn. 2016. Cryoconite: The dark biological secret of the cryosphere. Progress in Physical Geography 40, no. 1: 66–111. doi:10.1177/0309133315616574.
  • Coulson, S.J., I.D. Hodkinson, and N.R. Webb. 2003. Aerial dispersal of invertebrates over a high-Arctic glacier foreland: Midtre Lovénbreen, Svalbard. Polar Biology 26: 530–7. doi:10.1007/s00300-003-0516-x.
  • Coulson, S.J., and N.G. Midgley. 2012. The role of glacier mice in the invertebrate colonisation of glacial surfaces: The moss balls of the Falljökull, Iceland. Polar Biology 35: 1651–8. doi:10.1007/s00300-012-1205-4.
  • de Vries, F.T., C. Thion, M. Bahn, B.B. Pinto, S. Cécillon, B. Frey, H. Grant, et al. 2021. Glacier forelands reveal fundamental plant and microbial controls on short-term ecosystem nitrogen retention. Journal of Ecology 109, no. 10: 3710–23. doi:10.1111/1365-2745.13748.
  • Edwards, J.G. 1975. The Carabidae of Glacier National Park, Montana. The Coleopterists Bulletin 29, no. 1: 47–58. https://www.jstor.org/stable/3999839.
  • Eisenbeis, G., and E. Meyer. 1999. Ecophysiological and morphological features of glacier-dwelling Collembola. In Cold-adapted organisms, ed. R. Margesin and F. Schinner. Berlin, Heidelberg: Springer. doi:10.1007/978-3-662-06285-2_11.
  • Erschbamer, B., and M.S. Caccianiga. 2016. Glacier forelands: Lessons of plant population and community development. Progress in Botany 78: 259–84.
  • Eymann, J., J. Degreef, C. Häuser, J.C. Monje, Y. Samyn, and D. Vandenspiegel. 2010. Manual on field recording techniques and protocols for all Taxa. Biodiversity Inventories and Monitoring 8, no. part1: i–iv; 330 pp; (part2): i-iv: 322 p, Abc Taxa.
  • Ficetola, G.F., S. Marta, A. Guerrieri, M. Gobbi, R. Ambrosini, D. Fontaneto, A. Zerboni, J. Poulenard, M. Caccianiga, and W. Thuiller. 2021. Dynamics of ecological communities following current retreat of glaciers. Annual Review of Ecology, Evolution, and Systematics 52: 405–26. doi:10.1146/annurev-ecolsys-010521-040017.
  • Fjellberg, A. 2010. Cryophilic isotomidae (Collembola) of the Northwestern Rocky Mountains, U.S.A. Zootaxa 2513: 27–49. doi:10.11646/zootaxa.2513.1.2.
  • Flø, D., and S. Hågvar. 2013. Aerial dispersal of invertebrates and mosses close to a receding alpine glacier in southern Norway. Arctic, Antarctic, and Alpine Reseach 45: 481–90. doi:10.1657/1938-4246-45.4.481.
  • Franzén, M., P. Dieker, J. Schrader, and A. Helm. 2019. Rapid plant colonization of the forelands of a vanishing glacier is strongly associated with species traits. Arctic, Antarctic, and Alpine Research 51, no. 1: 366–78. doi:10.1080/15230430.2019.1646574.
  • Freppaz, M., M.W. Williams, J. Gabrieli, R. Gorra, I. Mani, J. Ascher-Jenull, M. Egli, and L. Celi. 2021. Characterization of organic-rich mineral debris revealed by rapid glacier retreat, Indren Glacier, European Alps. Journal of Mountain Science 18: 1521–153. doi:10.1007/s11629-020-6288-8.
  • Gaudio, D., and M. Gobbi. 2022. Glaciers in the Anthropocene. A biocultural view. Berghahn Journals. doi:10.3167/nc.2022.170301.
  • Gereben, B.-A. 1995. Co-occurrence and microhabitat distribution of six Nebria Species (Coleoptera: Carabidae) in an Alpine glacier retreat zone in the Alps, Austria. Arctic and Alpine Research 27, no. 4: 371–9. doi:10.1080/00040851.1995.12003134.
  • Gereben-Krenn, B.-A., H.W. Krenn, and M.A. Strodl. 2011. Initial colonization of new terrain in an Alpine glacier foreland by Carabid Beetles (Carabidae, Coleoptera). Arctic, Antarctic, and Alpine Research 43, no. 3: 397–403. doi:10.1657/1938-4246-43.3.397.
  • Gibert, J., and D.C. Culver. 2009. Assessing and conserving groundwater biodiversity: An introduction. Freshwater Biology 54: 639–48. doi:10.1111/j.1365-2427.2009.02202.x.
  • Gobbi, M. 2020. Global warning: Challenges, threats and opportunities for carabid beetles (Coleoptera: Carabidae) in high altitude habitats. Acta Zoologica Academiae Scientiarum Hungaricae 66, no. Suppl.: 5–20. doi:10.17109/AZH.66.Suppl.5.2020.
  • Gobbi, M., M. Armanini, T. Boscolo, R. Chirichella, V. Lencioni, S. Ornaghi, and A. Mustoni. 2021. Habitat and landform types drive the distribution of Carabid Beetles at high altitudes. Diversity 13: 142. doi:10.3390/d13040142.
  • Gobbi, M., Á. Barragán, M. Brambilla, E. Moreno, W. Pruna, and P. Moret. 2018. Hand searching versus pitfall trapping: How to assess biodiversity of ground beetles (Coleoptera: Carabidae) in high altitude equatorial Andes? Journal of Insect Conservation 22: 533–43. doi:10.1007/s10841-018-0082-8.
  • Gobbi, M., F. De Bernardi, M. Pelfini, B. Rossaro, and P. Brandmayr. 2006. Epigean arthropod succession along a 154 year glacier foreland chronosequence in the Forni Valley (Central Italian Alps). Arctic, Antarctic, and Alpine Research 38, no. 3: 357–62. doi:10.1657/1523-0430(2006)38[357:EASAAY]2.0.CO;2.
  • Gobbi, M., M. Isaia, and F. De Bernardi. 2011. Arthropod colonisation of a debris-covered glacier. The Holocene 21, no. 2: 343–9. doi:10.1177/0959683610374885.
  • Gobbi, M., M. Maffioletti, G. Losapio, D. Tampucci, M. Isaia, F. Ballarin, C. Compostella, R. Seppi, and M. Caccianiga. 2017. Life in harsh environments: Carabid and spider trait types and functional diversity on a debris-covered glacier and along its foreland. Ecological Entomology 42, no. 6: 838–48. doi:10.1111/een.12456.
  • Grewling, L., R. Laniecki, M. Jastrzębski, J. Borkowska, Z. Marek, K. Kondrat, Z. Nowak, et al. 2023. Dispersal of pollen and invertebrates by wind in contrasting Arctic habitats of Svalbard. Polish Polar Research. doi:10.24425/ppr.2023.146740.
  • Gwiazdowicz, D.J., B. Zawieja, I. Olejniczak, P. Skubala, A.K. Gdula, and S.J. Coulson. 2020. Changing Microarthropod communities in front of a receding glacier in the High Arctic. Insects 11: 226. doi:10.3390/insects11040226.
  • Hågvar, S. 1982. Collembola in Norwegian coniferous forest soils I. Relations to plant communities and soil fertility. Pedobiologia 24: 255–96. doi:10.1016/S0031-4056(23)05888-2.
  • Hågvar, S. 1995. Long distance, directional migration on snow in a forest collembolan, Hypogastrura socialis (Uzel). Acta Zoologica Fennica 196: 200–5.
  • Hågvar, S. 2000. Navigation and behaviour of four Collembola species migrating on the snow surface. Pedobiologia 44: 221–33. doi:10.1078/S0031-4056(04)70042-6.
  • Hågvar, S. 2010. Primary succession of springtails (Collembola) in a Norwegian glacier foreland. Arctic, Antarctic, and Alpine Research 42: 422–9. doi:10.1657/1938-4246-42.4.422.
  • Hågvar, S., and D. Flø. 2015. Succession and phenology of the generalist predator Mitopus morio (Fabricius, 1799) (Opiliones) in a glacier foreland. Norwegian Journal of Entomology 62: 210–5.
  • Hågvar, S., and M. Gobbi. 2022. The role of arthropods in early colonization near melting glaciers: Contradictions between ecological assumptions and recent study results. Acta Oecologica 114: 103820. Corpus ID: 246690963. doi:10.1016/j.actao.2022.103820.
  • Hågvar, S., M. Gobbi, R. Kaufmann, M. Ingimarsdóttir, M. Caccianiga, B. Valle, P. Pantini, P.P. Fanciulli, and A. Vater. 2020. Ecosystem birth near melting glaciers: A review on the pioneer role of ground-dwelling arthropods. Insects 11, no. 9: 644. doi:10.3390/insects11090644.
  • Hågvar, S., and B.R. Kjøndal. 1981. Succession, diversity and feeding habits of microarthropods in decomposing birch leaves. Pedobiologia 22: 385–408. doi:10.1016/S0031-4056(23)03903-3.
  • Hågvar, S., and M. Ohlson. 2013. Ancient carbon from a melting glacier gives high 14C age in living pioneer invertebrates. Scientific Reports 3: 2820. doi:10.1038/srep02820.
  • Hågvar, S., M. Ohlson, and J.E. Brittain. 2016. A melting glacier feeds aquatic and terrestrial invertebrates with ancient carbon and supports early succession. Arctic, Antarctic, and Alpine Research 48: 551–62. doi:10.1657/AAAR0016-027.
  • Hågvar, S., M. Ohlson, and D. Flø. 2017. Animal successional pathways for about 200 years near a melting glacier: A Norwegian case study. In Glacier evolution in a changing world, ed. D. Godone, 147–76. Intechopen.com.
  • Hågvar, S., and A. Pedersen. 2015. Food choice of invertebrates during early glacier foreland succession. Arctic, Antarctic, and Alpine Research 47: 561–72. doi:10.1657/AAAR0014-046.
  • Hågvar, S., T. Solhøy, and C. Mong. 2009. Primary succession of soil mites (Acari) in a Norwegian glacier foreland, with emphasis on Oribatid species. Arctic, Antarctic, and Alpine Research 41: 219–27. doi:10.1657/1938-4246-41.2.219.
  • Hågvar, S. 2012. Primary succession in glacier forelands: How small animals conquer new land around melting glaciers. In International perspectives on global environmental change, ed. S.S. Young and S.E. Silvern, 151–72. INTECH Open Access Publisher. www.intechopen.com.
  • Harvey, J., K. Tougeron, R. Gols, R. Heinen, M. Abarca, P.K. Abram, Y. Basset, et al. 2022. Scientists’ warning of climate change and insects. Ecological Monographs e1553. doi:10.1002/ecm.1553.
  • Hawes, T., M. Worland, P. Convey, and J. Bale. 2007. Aerial dispersal of springtails on the Antarctic Peninsula: Implications for local distribution and demography. Antarctic Science 19, no. 1: 3–10. doi:10.1017/S0954102007000028.
  • Haybach, G. 1972. Zur Collembolenfauna der Pasterzenumrahmung im Glocknergebiet (Hohe Tauern). Verhandlungen der Zoologisch-Botanischen Gesellschaft in Wien 110: 7–36.
  • Haybach, G. 1980. Über einige Collembolen aus dem Berninagebiet. Mitteilungen der Schweizerischen Entomologischen Gesellschaft 53: 321–5.
  • Hodkinson, I.D., S.J. Coulson, J. Harrison, and N.R. Webb. 2001. What a wonderful web they weave: Spiders, nutrient capture and early ecosystem development in the High Arctic – Some counter-intuitive ideas on community assembly. Oikos 95, no. 2: 349–52. doi:10.1034/j.1600-0706.2001.950217.x.
  • Hodkinson, I.D., S.J. Coulson, and N.R. Webb. 2004. Invertebrate community assembly along proglacial chronosequences in the High Arctic. Journal of Animal Ecology 73: 556–68. doi:10.1111/j.0021-8790.2004.00829.x.
  • Hodkinson, I.D., N.R. Webb, and S.J. Coulson. 2002. Primary community assembly on land – The missing stages: Why are the heterotrophic organisms always there first? Journal of Ecology 90: 569–77. doi:10.1046/j.1365-2745.2002.00696.x.
  • Hopkin, S. 1997. Biology of the Springtails (Insecta: Collembola). Oxford: Oxford University Press.
  • Ingimarsdóttir, M., T. Caruso, J. Ripa, O.B. Magnúsdóttir, M. Migliorini, and K. Hedlund. 2012. Primary assembly of soil communities: Disentangling the effect of dispersal and local environment. Oecologia November; 170, no. 3: 745–54. doi:10.1007/s00442-012-2334-8. Epub April 26, 2012.
  • Ingimarsdóttir, M., A. Michelsen, J. Ripa, and K. Hedlund. 2014. Food sources of early colonising arthropods: The importance of allochthonous input. Pedobiologia 57: 21–6. doi:10.1016/j.pedobi.2013.09.004.
  • Ingimarsdóttir, M., J. Ripa, and K. Hedlund. 2013a. Corridor or drift fence? The role of medial moraines for fly dispersal over glacier. Polar Biolology 36: 925–32. doi:10.1007/s00300-013-1316-6.
  • Ingimarsdóttir, M., J. Ripa, J.Ó.B. Magnúsdóttir, and K. Hedlund. 2013b. Food web assembly in isolated habitats: A study from recently emerged nunataks, Iceland. Basic and Applied Ecology 14: 174–83. doi:10.1016/j.baae.2012.12.002.
  • Jaroměřská, T.N., R. Ambrosini, M. Mazurkiewicz, A. Franzetti, P. Klimaszyk, P. Rozwalak, E. Poniecka, L. Vondrovicová, and K. Zawierucha. 2023. Spatial distribution and stable isotopic composition of invertebrates uncover differences between habitats on the glacier surface in the Alps. Limnology 24: 83–93. doi:10.1007/s10201-023-00713-w.
  • Jomelli, V., M. Khodri, V. Favier, D. Brunstein, M.-P. Ledru, P. Wagnon, P.-H. Blard, et al. 2011. Irregular tropical glacier retreat over the Holocene epoch driven by progressive warming. Nature 474: 196–9. doi:10.1038/nature10150.
  • Kastovska, K., M. Stibal, M. Sabacka, B. Cerna, H. Santruckova, and J. Elster. 2006. Microbial communitystructure and ecology of subglacial sediments in two polythermal Svalbard glaciers characterized by epifluorescence microscopy and PLFA. Polar Biology 30: 277–87. doi:10.1007/s00300-006-0181-y.
  • Kaufmann, R. 2001. Invertebrate succession on an alpine glacier foreland. Ecology 82, no. 8: 2261–78. doi:10.1890/0012-9658(2001)082[2261:ISOAAG]2.0.CO;2.
  • Kaufmann, R. 2002. Glacier foreland colonization: Distinguishing between short-term and long-term effects of climate change. Oecologia 130: 470–5. doi:10.1007/s00442-001-0815-2.
  • Kaufmann, R., M. Fuchs, and N. Gosterxeier. 2002. The soil fauna of an alpine glacier foreland: Colonization and succession. Arctic, Antarctic, and Alpine Research 34, no. 3: 242–50. doi:10.1080/15230430.2002.12003491.
  • Kaufmann, R., and A. Juen. 2001. Habitat use and niche segregation of the genus Nebria (Coleoptera: Carabidae) in the Austrian Alps. Mitteilungen der Schweizerischen Entomologischen Gesellschaft 74: 237–54.
  • Kaufmann, R., and C. Raffl. 2002. Diversity in primary succession: The chronosequence of a glacier foreland. In Global mountain biodiversity: A global assessment, ed. C. Körner and E.N. Spehn, 177–90. London, England: Parthenon.
  • Klopsch, C., J.C. Yde, J.A. Matthews, A.E. Vater, and M.A.K. Gillespie. 2023. Repeated survey along the foreland of a receding Norwegian glacier reveals shifts in succession of beetles and spiders. The Holocene 33, no. 1: 14–26. doi:10.1177/09596836221126032.
  • Knapp, M., J. Knappová, P. Jakubec, P. Vonička, and P. Moravec. 2020. Incomplete species lists produced by pitfall trapping: How many carabid species and which functional traits are missing? Biological Conservation 245: 108545. Article 108545. doi:10.1016/j.biocon.2020.108545.
  • König, T., R. Kaufmann, and S. Scheu. 2011. The formation of terrestrial food webs in glacier foreland: Evidence for the pivotal role of decomposer prey and intraguild predation. Pedobiologia 54: 147–52. doi:10.1016/j.pedobi.2010.12.004.
  • Lencioni, V., and M. Gobbi. 2021. Monitoring and conservation of cryophilous biodiversity: Concerns when working with insect populations in vanishing glacial habitats. Insect Conservation and Diversity 14, no. 6: 723–9. doi:10.1111/icad.12522.
  • Malcomb, N.L., and G.C. Wiles. 2013. Tree-ring-based reconstructions of North American glacier mass balance through the Little Ice Age – Contemporary warming transition. Quaternary Research 79: 123–37. doi:10.1016/j.yqres.2012.11.005.
  • Marshall, S.A., R.S. Anderson, R.E. Roughley, V. Behan-Pelletier, and H. V. Danks. 1994. Terrestrial arthropod biodiversity: Planning a study and recommended sampling techniques. A brief prepared by the biological survey of Canada (Terrestrial Arthropods) 1994. 2007th ed. Ottawa: Biological Survey of Canada Commission biologique du Canada.
  • Marta, S., A. Zimmer, M. Caccianiga, M. Gobbi, R. Ambrosini, R.S. Azzoni, F. Gili, et al. 2022. Heterogeneous changes of soil microclimate in high mountains and glacier forelands. Research Square. doi:10.21203/rs.3.rs-2017904/v1.
  • Martens, J. 1978. Spinnentiere, Arachnida: Weberknechte, Opiliones. In Die Tierwelt Deutschlands, ed. F. Senglaub and H.J. Hannemann, 1–464. Vol. 64. Jena: Fischer.
  • Matthews, J.A. 1992. The ecology of recently-deglaciated terrain: A geoecological approach to glacier forelands and primary succession, 386. Cambridge: Cambridge University Press.
  • Matthews, J.A., and A.E. Vater. 2015. Pioneer zone geo-ecological change: Observations from a chronosequence on the Storbreen glacier foreland, Jotunheimen, southern Norway. Catena 135: 219–30. doi:10.1016/j.catena.2015.07.016.
  • Medail, F., and P. Quezel. 1999. Biodiversity hotspots in the Mediterranean Basin: Setting global conservation priorities. Conservation Biology 13: 1510–13. doi:10.1046/j.1523-1739.1999.98467.x.
  • Menta, C., C. Siniscalco, B. Bonati, and S. Remelli. 2019. Food choice and fitness of Folsomia candida (Collembola, Isotomidae) fed on twelve species of Truffle. Frontiers in Environmental Science 7: 114. doi:10.3389/fenvs.2019.00114.
  • Moral, R.D. 2009. Primary succession on Mount St. Helens, with reference to Surtsey. Surtsey Research 12: 153–7. doi:10.33112/surtsey.12.15.
  • Moret, P., Á. Barragán, E. Moreno, S. Cauvy-Fraunié, and M. Gobbi. 2020. When the ice has gone: Colonisation of equatorial glacier forelands by ground beetles (Coleoptera: Carabidae). Neotropical Entomology 49: 213–26. doi:10.1007/s13744-019-00753-x.
  • Nentwig, W., T. Blick, R. Bosmans, D. Gloor, A. Hänggi, and C. Kropf. 2023. Spiders of Europe. Version 1. https://www.araneae.nmbe.ch (accessed January 11, 2023).
  • Oerlemans, J. 2005. Extracting a climate signal from 169 glacier records. Science 308: 675–7. doi:10.1126/science.1107046.
  • Petersen, H. 1971. The nutritional biology of Collembola and its ecological significance. A review of recent literature with a few original observations. Entomologiske Meddelelser 39: 97–118. (In Danish, English summary).
  • Potapov, A., B.C. Bellini, S.L. Chown, L. Deharveng, F. Janssens, L. Kováč, N. Kuznetsova, et al. 2020. Towards a global synthesis of Collembola knowledge – Challenges and potential solutions. Soil Organisms 92, no. 3: 161–88. doi:10.25674/so92iss3pp161.
  • Potapov, A.M., C.A. Guerra, J. van den Hoogen, A. Babenko, B.C. Bellini, M.P. Berg, S.L. Chown, et al. 2022. Globally invariant metabolism but density-diversity mismatch in springtails. Nature Communications. doi:10.1101/2022.01.07.475345.
  • Raso, L., D. Sint, D.R. Mayer, S. Plangg, T. Recheis, S. Brunner, R. Kaufmann, and M. Traugott. 2014. Intraguild predation in pioneer predator communities of alpine glacier forelands. Molecular Ecology 23: 3744–54. doi:10.1111/mec.12649.
  • Rosero, P., V. Crespo-Pérez, R. Espinosa, P. Andio, Á. Barragán, P. Moret, M. Gobbi, et al. 2021. Multi-taxa colonisation along the foreland of a vanishing equatorial glacier. Ecography 44, no. 7: 1010–21. doi:10.1111/ecog.05478.
  • Rusek, J. 2001. Microhabitats of Collembola (Insecta: Entognatha) in beech and spruce forests and their influence on biodiversity. European Journal of Soil Biology 37: 237–44. doi:10.1016/S1164-5563(01)01090-1.
  • Scheu, S., and F. Simmerling. 2004. Growth and reproduction of fungal feeding Collembola as affected by fungal species, melanin and mixed diets. Oecologia 139, no. 3: 347–53. doi:10.1007/s00442-004-1513-7. Epub March 12, 2004. PMID: 15021980.
  • Schmitt, T. 2009. Biogeographical and evolutionary importance of the European high mountain systems. Frontiers in Zoology 6: 9. doi:10.1186/1742-9994-6-9.
  • Sint, D., R. Kaufmann, R. Mayer, and M. Traugott. 2019. Resolving the predator first paradox: Arthropod predator food webs in pioneer sites of glacier forelands. Molecular Ecology 28: 336–47. doi:10.1111/mec.14839.
  • Skubala, P., and M. Gulvik. 2005. Pioneer oribatid mite communities (Acari, Oribatida) in newly exposed natural (glacier foreland) and anthropogenic (post-industrial dump) habitats. Polish Journal of Ecology 53, no. 3: 395–407.
  • Stubbins, A., E. Hood, P.A. Raymond, G.R. Aiken, R.L. Sleighter, P.J. Hernes, D. Butman, et al. 2012. Anthropogenic aerosols as a source of ancient dissolved organic matter in glaciers. Nature Geoscience 5: 8–11. doi:10.1038/ngeo1403.
  • Tampucci, D., M. Gobbi, E. Cabrini, C. Compostella, G. Marano, P. Pantini, and M. Caccianiga. 2015. Plant and arthropod colonization of a glacier foreland in a peripheral mountain range. Biodiversity 16, no. 4: 213–23. doi:10.1080/14888386.2015.1117990.
  • Tenan, S., C. Maffioletti, M. Caccianiga, C. Compostella, R. Seppi, and M. Gobbi. 2016. Hierarchical models for describing space-for-time variations in insect population size and sex-ratio along a primary succession. Ecological Modelling 329C: 18–28. doi:10.1016/j.ecolmodel.2016.02.006.
  • Valle, B., R. Ambrosini, M. Caccianiga, and M. Gobbi. 2020. Ecology of the cold-adapted species Nebria germari (Coleoptera: Carabidae): The role of supraglacial stony debris as refugium during the current interglacial period. Acta Zoologica Academiae Scientiarum Hungaricae 66: 199–220. doi:10.17109/AZH.66.Suppl.199.2020.
  • Valle, B., C. Cucini, F. Nardi, M. Caccianiga, M. Gobbi, M. Di Musciano, A. Carapelli, G.F. Ficetola, A. Guerrieri, and P.P. Fanciulli. 2021. Desoria calderonis sp. nov., a new species of alpine cryophilic springtail (Collembola: Isotomidae) from the Apennines (Italy), with phylogenetic and ecological considerations. European Journal of Taxonomy 787: 32–52. doi:10.5852/ejt.2021.787.1599.
  • Valle, B., M. Di Musciano, M. Gobbi, M. Bonelli, E. Colonnelli, G. Gardini, M. Migliorini, et al. 2022a. Biodiversity and ecology of plants and arthropods on the last preserved glacier of the Apennines mountain chain (Italy). The Holocene 32, no. 8: 853–65. doi:10.1177/09596836221096292.
  • Valle, B., M. Gobbi, M. Brambilla, M.S. Borgatti, and M. Caccianiga. 2023. Finding the optimal strategy for quantitative sampling of springtails (Hexapoda: Collembola) in glacial lithosols. Pedobiologia 101: 150914. doi:10.1016/j.pedobi.2023.150914.
  • Valle, B., M. Gobbi, M. Tognetti, M.S. Borgatti, C. Compostella, P. Pantini, and M. Caccianiga. 2022b. Glacial biodiversity of the southernmost glaciers of the European Alps (Clapier and Peirabroc, Italy). Journal of Mountain Science 19, no. 8: 2139–59. doi:10.1007/s11629-022-7331-8.
  • Vater, A.E. 2006. Invertebrate and arachnid succession on selected glacier forelands in southern Norway. Thesis for the degree of Doctor of Philosophy, 372. University of Wales Swansea.
  • Vater, A.E. 2012. Insect and arachnid colonization on the Storbreen glacier foreland, Jotunheimen, Norway: Persistence of taxa suggests an alternative model of succession. The Holocene 22, no. 10: 1123–33. doi:10.1177/0959683612441844.
  • Vater, A.E., and J.A. Matthews. 2013. Testing the “addition and persistence” model of invertebrate succession in a subalpine glacier-foreland chronosequence: Fåbergstølsbreen, southern Norway. The Holocene 23: 1151–62. doi:10.1177/0959683613483623.
  • Vater, A.E., and J.A. Matthews. 2015. Succession of pitfall-trapped insects and arachnids on eight Norwegian glacier forelands along an altitudinal gradient: Patterns and models. The Holocene 25, no. 1: 108–29. doi:10.1177/0959683614556374.
  • Zawierucha, K., M. Kolicka, N. Takeuchi, and Ł. Kaczmarek. 2017. What animals can live in cryoconite holes? A faunal review. Journal of Zoology 295, no. 3: 159–69. doi:10.1111/jzo.12195.
  • Zhang, B., L. Chang, Z. Ni, X. Sun, and D.H. Wu. 2017. Directional migration of three Desoria species (Collembola: Isotomidae) on the snow surface in late winter. European Journal of Soil Biology 81: 64–8. doi:10.1016/j.ejsobi.2017.06.009.