245
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Soil nutrient availability affects tundra plant community composition and plant–vole interactions

, & ORCID Icon
Article: 2356276 | Received 18 Oct 2023, Accepted 23 Apr 2024, Published online: 05 Jun 2024

References

  • Aars, J., and R. A. Ims. 2002. Intrinsic and climatic determinants of population demography: The winter dynamics of tundra voles. Ecology 83, no. 12: 3449–14. doi:10.1890/0012-9658(2002)083[3449:IACDOP]2.0.CO;2.
  • Archer, S., and L. L. Tieszen. 1983. Effects of simulated grazing on foliage and root production and biomass allocation in an Arctic tundra sedge (Eriophorum vaginatum). Oecologia 58, no. 1: 92–102. doi:10.1007/BF00384547.
  • Arctic Monitoring and Assessment Programme. 2021. Arctic climate change update 2021: Key Trends and impacts. Summary for policy-makers. Arctic Monitoring and Assessment Programme, Tromsø, Norway 16, 148.
  • Batzli, G. O., and H. Henttonen. 1990. Demography and resource use by microtine rodents near Toolik Lake. Vol. 22. Alaska, U.S.A: Arctic & Alpine Research.
  • Batzli, G. O., and C. Lesieutre. 1991. The influence of high quality food on habitat use by Arctic microtine rodents. Oikos 60, no. 3: 299–306. doi:10.2307/3545071.
  • Bret-Harte, M. S., E. A. García, V. M. Sacré, J. R. Whorley, J. L. Wagner, S. C. Lippert, and F. S. Chapin. 2004. Plant and soil responses to neighbour removal and fertilization in Alaskan tussock tundra. Journal of Ecology 92, no. 4: 635–47. doi:10.1111/j.0022-0477.2004.00902.x.
  • Bret-Harte, M. S., M. C. Mack, G. R. Goldsmith, D. B. Sloan, J. DeMarco, G. R. Shaver, P. M. Ray, Z. Biesinger, and F. S. Chapin III. 2008. Plant functional types do not predict biomass responses to removal and fertilization in Alaskan Arctic tundra. Journal of Ecology 96, no. 4: 713–26. doi:10.1111/j.1365-2745.2008.01378.x.
  • Bret-Harte, M. S., G. R. Shaver, J. P. Zoerner, J. F. Johnstone, J. L. Wagner, S. Chavez, J. A. Laundre, S. C. Lippert, and J. A. Laundre. 2001. Developmental plasticity allows Betula nana to dominate tundra subjected to an altered environment. Ecology 82, no. 1: 18–32. doi:10.2307/2680083.
  • Camill, P., J. A. Lynch, J. S. Clark, J. B. Adams, and B. Jordan. 2001. Changes in biomass, aboveground net primary production, and peat accumulation following permafrost thaw in the boreal peatlands of Manitoba, Canada. Ecosystems 4, no. 5: 461–78. doi:10.1007/s10021-001-0022-3.
  • Chapin, F. S., III, and G. R. Shaver. 1985. Individualistic growth response of tundra plant species to environmental manipulations in the field. Ecology 66, no. 2: 564–76. doi:10.2307/1940405.
  • Chapin, F. S., III, and M. Slack. 1979. Effect of defoliation upon root growth, phosphate absorption and respiration in nutrient-limited tundra graminoids. Oecologia 42, no. 1: 67–79. doi:10.1007/BF00347619.
  • Cherry, J. E., S. J. Dery, Y. Cheng, M. Stieglitz, A. S. Jacobs, F. Pan. 2014. Climate and hydrometeorology of the Toolik Lake Region and the Kuparuk River Basin: Past, present and future. In Alaska’s changing Arctic: Ecological consequences for tundra, streams, and lakes, ed. J. E. Hobbie and G. W. Kling, 21–60. New York, NY: Oxford University Press.
  • Christie, K. S., J. P. Bryant, L. Gough, V. T. Ravolainen, R. W. Ruess, and K. D. Tape. 2015. The role of vertebrate herbivores in regulating shrub expansion in the Arctic: A synthesis. BioScience 65, no. 12: 1123–33. doi:10.1093/biosci/biv137.
  • Curasi, S., N. Fetcher, R. E. Hewitt, P. M. Lafleur, M. M. Loranty, M. C. Mack, … A. V. Rocha. 2022. Range shifts in a foundation sedge potentially induce large Arctic ecosystem carbon losses and gains. Environmental Research Letters 17, no. 4.
  • Elmendorf, S. C., G. H. Henry, R. D. Hollister, R. G. Björk, N. Boulanger-Lapointe, E. J. Cooper, … S. Wipf. 2012. Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nature Climate Change 2, no. 6: 453–7. doi:10.1038/nclimate1465.
  • Fauteux, D., G. Gauthier, D. Berteaux, and R. Ims. 2015. Seasonal demography of a cyclic lemming population in the Canadian Arctic. Journal of Animal Ecology 84, no. 5: 1412–22. doi:10.1111/1365-2656.12385.
  • Fetcher, N. 1985. Effects of removal of neighboring species on growth, nutrients, and microclimate of Eriophorum vaginatum. Arctic and Alpine Research 17, no. 1: 7–17. doi:10.1080/00040851.1985.12004445.
  • Gorham, E. 1991. Northern peatlands: Role in the carbon cycle and probable responses to climatic warming. Ecological Applications 1, no. 2: 182–95. doi:10.2307/1941811.
  • Gough, L., and D. R. Johnson. 2018. Mammalian herbivory exacerbates plant community responses to increased soil nutrients in two Alaskan tundra plant communities. Arctic Science 4, no. 2: 153–66. doi:10.1139/AS-2017-0025.
  • Gough, L., J. C. Moore, G. R. Shaver, R. T. Simpson, and D. R. Johnson. 2012. Above-and belowground responses of Arctic tundra ecosystems to altered soil nutrients and mammalian herbivory. Ecology 93, no. 7: 1683–94. doi:10.1890/11-1631.1.
  • Gough, L., E. A. Ramsey, and D. R. Johnson. 2007. Plant-herbivore interactions in Alaskan Arctic tundra change with soil nutrient availability. Oikos 116, no. 3: 407–18. doi:10.1111/j.0030-1299.2007.15449.x.
  • Gough, L., K. Shrestha, D. R. Johnson, and B. Moon. 2008. Long-term mammalian herbivory and nutrient addition alter lichen community structure in Alaskan dry heath tundra. Arctic, Antarctic and Alpine Research 40, no. 1:65–73. doi:10.1657/1523-0430(06-087)
  • Grogan, P., and T. J. Zamin. 2018. Growth responses of the common Arctic graminoid Eriophorum vaginatum to simulated grazing are independent of soil nitrogen availability. Oecologia 186, no. 1: 151–62. doi:10.1007/s00442-017-3990-5.
  • Heijmans, M. M. P. D., R. I. Magnusson, M. J. Lara, G. V. Frost, I. H. Myers-Smith, J. van Huissteden, … J. Limpens. 2022. Tundra vegetation change and impacts on permafrost. Nature Reviews Earth & Environment 3, no. 1: 68–84. doi:10.1038/s43017-021-00233-0.
  • Heskel, M., H. Greaves, A. Kornfeld, L. Gough, O. K. Atkin, M. H. Turnbull, G. Shaver, and K. L. Griffin. 2013. Differential physiological responses to environmental change promote woody shrub expansion. Ecology and Evolution 3, no. 5: 1149–62. doi:10.1002/ece3.525.
  • Heskel, M. A., O. Roger Anderson, O. K. Atkin, M. H. Turnbull, and K. L. Griffin. 2012. Leaf- and cell-level carbon cycling responses to a nitrogen and phosphorus gradient in two Arctic tundra species. American Journal of Botany 99, no. 10: 1702–14. doi:10.3732/ajb.1200251.
  • Hobbie, S. E., L. Gough, and G. R. Shaver. 2005. Species compositional differences on different‐aged glacial landscapes drive contrasting responses of tundra to nutrient addition. Journal of Ecology 93, no. 4: 770–82. doi:10.1111/j.1365-2745.2005.01006.x.
  • Hobbie, J. E., and G. W. Kling. 2014. Alaska’s changing Arctic: Ecological consequences for tundra, streams, and lakes. New York: Oxford Press.
  • Hobbie, S. E., A. Shevtsova, and F. S. Chapin III. 1999. Plant responses to species removal and experimental warming in Alaskan tussock tundra. Oikos 84, no. 3: 417–34. doi:10.2307/3546421.
  • Ims, R. A., and E. Fuglei. 2005. Trophic interaction cycles in tundra ecosystems and the impact of climate change. BioScience 55, no. 4: 311. doi:10.1641/0006-3568(2005)055[0311:TICITE]2.0.CO;2.
  • Johnson, D. R., and L. Gough. 2013. Two Arctic tundra graminoids differ in tolerance to herbivory when grown with added soil nutrients. Botany 91, no. 2: 82–90. doi:10.1139/cjb-2012-0143.
  • Kleinhesselink, A. R., S. M. Magnoli, and J. H. Cushman. 2014. Shrubs as ecosystem engineers across an environmental gradient: Effects on species richness and exotic plant invasion. Oecologia 175, no. 4: 1277–90. doi:10.1007/s00442-014-2972-0.
  • Koltz, A., L. Gough, and J. R. McLaren. 2022. Arctic terrestrial food webs: Effects of climate change and implications for carbon and nutrient cycling. Annals of the New York Academy of Sciences 1516, no. 1: 28–47. doi:10.1111/nyas.14863.
  • Macander, M. J., P. R. Nelson, T. W. Nawrocki, G. V. Frost, K. M. Orndahl, E. C. Palm, A. F. Wells, and S. J. Goetz. 2022. Time series maps reveal widespread change in plant functional type cover across Arctic and boreal Alaska and Yukon. Environmental Research Letters 17, no. 5.
  • Mack, M. C., E. A. Schuur, M. S. Bret-Harte, G. R. Shaver, and F. S. Chapin. 2004. Ecosystem carbon storage in Arctic tundra reduced by long-term nutrient fertilization. Nature 431, no. 7007: 440–3. doi:10.1038/nature02887.
  • Mekonnen, Z. A., W. J. Riley, L. T. Berner, N. J. Bouskill, M. S. Torn, G. Iwahana, and R. F. Grant. 2021. Arctic tundra shrubification: A review of mechanisms and impacts on ecosystem carbon balance. Environmental Research Letters 16, no. 5. doi:10.1088/1748-9326/abf28b.
  • Min, E., M. Wilcots, S. Naeem, L. Gough, J. R. McLaren, R. J. Rowe, E. Rastetter, N. Boelman, and K. L. Griffin. 2021. Herbivore influence on carbon sink capacity of Alaskan dry heath tundra is sensitive to temperature and light. Environmental Research Letters 16, no. 2: 024027. doi:10.1088/1748-9326/abd3d0.
  • Myers-Smith, I. H., B. C. Forbes, M. Wilmking, M. Hallinger, T. Lantz, D. Block, and D. S. Hik. 2011. Shrub expansion in tundra ecosystems: Dynamics, impacts and research priorities. Environmental Research Letters 6, no. 4: 045509. doi:10.1088/1748-9326/6/4/045509.
  • Myers-Smith, I. H., M. M. Grabowski, H. J. D. Thomas, S. Angers-Blondin, G. N. Daskalova, A. D. Bjorkman, and C. D. Eckert. 2019. Eighteen years of ecological monitoring reveals multiple lines of evidence for tundra vegetation change. Ecological Monographs 89 (2). doi: 10.1002/ecm.1351.
  • Natali, S. M., E. A. G. Schuur, C. Trucco, C. E. Hicks Pries, K. G. Crummer, and A. F. Baron Lopez. 2011. Effects of experimental warming of air, soil and permafrost on carbon balance in Alaskan tundra. Global Change Biology 17 (3): 1394–407. doi:10.1111/j.1365-2486.2010.02303.x.
  • Olofsson, J., H. Tommervik, and T. V. Callaghan. 2012. Vole and lemming activity observed from space. Nature Climate Change 2 (12): 880–3. doi:10.1038/nclimate1537.
  • Pitelka, F. A., and G. O. Batzli. 2007. Population cycles of lemmings near Barrow, Alaska: A historical review. Acta Theriologica 52, no. 3: 323–36. doi:10.1007/BF03194229.
  • Pithan, F., and T. Mauritsen. 2014. Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nature Geoscience 7, no. 3: 181–4. doi:10.1038/ngeo2071.
  • Prager, C. M., N. T. Boelman, J. U. H. Eitel, J. T. Gersony, H. E. Greaves, M. A. Heskel, … K. L. Griffin. 2020. A mechanism of expansion: Arctic deciduous shrubs capitalize on warming-induced nutrient availability. Oecologia 192, no. 3: 671–85. doi:10.1007/s00442-019-04586-8.
  • Prager, C. M., S. Naeem, N. T. Boelman, J. U. H. Eitel, H. E. Greaves, M. A. Heskel, K. L. Griffin, D. N. L. Menge, L. A. Vierling, and K. L. Griffin. 2017. A gradient of nutrient enrichment reveals nonlinear impacts of fertilization on Arctic plant diversity and ecosystem function. Ecology and Evolution 7, no. 7: 2449–60. doi:10.1002/ece3.2863.
  • Rantanen, M., A. Y. Karpechko, A. Lipponen, K. Nordling, O. Hyvärinen, K. Ruosteenoja, T. Vihma, and A. Laaksonen. 2022. The Arctic has warmed nearly four times faster than the globe since 1979. Communications Earth and Environment 3, no. 1: 168. doi:10.1038/s43247-022-00498-3.
  • Rastetter, E. B., K. L. Griffin, R. J. Rowe, L. Gough, J. R. McLaren, and N. Boelman. 2021. Model responses to CO2 and warming are underestimated without explicit representation of Arctic small mammal grazing. Ecological Applications. doi: 10.1002/eap.2478.
  • Reid, D. G., F. Bilodeau, C. J. Krebs, G. Gauthier, J. Alice, B. S. Gilbert, E. Hofer, D. Duchesne, and E. Hofer. 2012. Lemming winter habitat choice: A snow-fencing experiment. Oecologia 168, no. 4: 935–46. doi:10.1007/s00442-011-2167-x.
  • Roy, A., L. Gough, N. T. Boelman, R. J. Rowe, K. L. Griffin, and J. R. McLaren. 2022. Small but mighty: Impacts of rodent-herbivore structures on carbon and nutrient cycling in Arctic tundra. Functional Ecology 36, no. 9: 2331–43. doi:10.1111/1365-2435.14127.
  • Roy, A., M. Suchocki, L. Gough, and J. McLaren. 2020. Above- and belowground responses to long-term herbivore exclusion. Arctic, Antarctic, and Alpine Research 52, no. 1: 109–19. doi:10.1080/15230430.2020.1733891.
  • Schmidt, N. M., R. A. Ims, T. T. Hoye, O. Gilg, L. H. Hansen, J. Hansen, and B. Sittler. 2012. Response of an Arctic predator guild to collapsing lemming cycles. Proceedings of the Royal Society B 279, no. 1746: 4417–22. doi:10.1098/rspb.2012.1490.
  • Schuur, E. A. G., A. D. McGuire, C. Schädel, G. Grosse, J. W. Harden, D. J. Hayes, … J. E. Vonk. 2015. Climate change and the permafrost carbon feedback. Nature 520, no. 7546: 171–9. doi:10.1038/nature14338.
  • Schuur, E. A. G., J. G. Vogel, K. G. Crummer, H. Lee, J. O. Sickman, and T. E. Osterkamp. 2009. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature 459, no. 7246: 556–9. doi:10.1038/nature08031.
  • Shaver, G. R., M. S. Bret-Harte, M. H. Jones, J. Johnstone, L. Gough, J. Laundre, and F. S. Chapin III. 2001. Species composition interacts with fertilizer to control long-term change in tundra productivity. Ecology 82, no. 11: 3163–81. doi:10.1890/0012-9658(2001)082[3163:SCIWFT]2.0.CO;2.
  • Shaver, G. R., F. S. Chapin III, and B. L. Gartner. 1986. Factors limiting seasonal growth and peak biomass accumulation in Eriophorum vaginatum in Alaskan tussock tundra. Ecology 74, no. 1: 257–78. doi:10.2307/2260362.
  • Shaver, G. R., and J. Laundre. 1997. Exsertion, elongation, and senescence of leaves of Eriophorum vaginatum and Carex bigelowii in Northern Alaska. Global Change Biology 3, no. S1: 146–57. doi:10.1111/j.1365-2486.1997.gcb141.x.
  • Shaver, G. R., J. A. Laundre, M. S. Bret-Harte, F. S. Chapin III, J. A. Mercado-Diaz, A. E. Giblin, and J. P. Schimel. 2014. Terrestrial ecosystems at Toolik Lake, Alaska. In Alaska’s changing Arctic: Ecological consequences for tundra, streams, and lakes, ed. J. E. Hobbie and G. W. Kling, 90–142. New York, NY: Oxford University Press.
  • Sistla, S. A., J. C. Moore, R. T. Simpson, L. Gough, G. R. Shaver, and J. P. Schimel. 2012. Long-term warming restructures Arctic tundra without changing net soil carbon storage. Nature 497, no. 7451: 615–9. doi:10.1038/nature12129.
  • Steketee, J., A. Rocha, L. Gough, K. Griffin, I. Klupar, R. An, N. Williamson, and R. Rowe. 2022. Small herbivores with big impacts: Tundra voles (Microtus oeconomus) alter post-fire ecosystem dynamics. Ecology 103, no. 7: e3689. doi:10.1002/ecy.3689.
  • Stow, D. A., A. Hope, D. McGuire, D. Verbyla, J. Gamon, F. Huemmrich, … R. Myneni. 2004. Remote sensing of vegetation and land-cover change in Arctic Tundra Ecosystems. Remote Sensing of Environment 89, no. 3: 281–308. doi:10.1016/j.rse.2003.10.018.
  • Sturm, M., R. Charles, and K. Tape. 2001. Climate change: Increasing shrub abundance in the Arctic. Nature 411, no. 6837: 546–7. doi:10.1038/35079180.
  • Suchocki, M. 2020. Effects of herbivory and soil nutrients on Arctic tundra vegetation. MS Thesis, Towson University.
  • Tissue, D. T., and W. C. Oechel. 1987. Response of Eriophorum vaginatum to elevated CO2 and temperature in the Alaskan tussock tundra. Ecology 68, no. 2: 401–10. doi:10.2307/1939271.
  • Tuomi, M., S. Stark, K. S. Hoset, M. Väisänen, L. Oksanen, F. J. A. Murguzur, and K. A. Bråthen. 2018. Herbivore effects on ecosystem process rates in a low-productive system. Ecosystems 827–43. doi:10.1007/s10021-018-0307-4.
  • Williamson, N. (2022). Examining the roles of small mammal herbivory and soil nutrient addition in structuring Arctic plant communities using experiments and remote sensing. MS Thesis, Towson University.
  • Zimov, S. A., S. P. Davydov, G. M. Zimova, A. I. Davydova, E. A. G. Schuur, K. Dutta, and I. S. Chapin. 2006. Permafrost carbon: Stock and decomposability of a globally significant carbon pool. Geophysical Research Letters 33, no. 20. doi: 10.1029/2006GL027484.