1,527
Views
43
CrossRef citations to date
0
Altmetric
Empirical Article

Individual Differences in Early Scientific Thinking: Assessment, Cognitive Influences, and Their Relevance for Science Learning

&
Pages 510-533 | Received 01 Aug 2018, Accepted 02 May 2019, Published online: 09 Jun 2019

References

  • Akerson, V., & Donnelly, L. A. (2010). Teaching nature of science to K‐2 students: What understandings can they attain? International Journal of Science Education, 32, 97–124. doi:10.1080/09500690902717283
  • Amsel, E., Klaczynski, P. A., Johnston, A., Bench, S., Close, J., Sadler, E., & Walker, R. (2008). A dual-process account of the development of scientific reasoning: The nature and development of metacognitive intercession skills. Cognitive Development, 23, 452–471. doi:10.1016/j.cogdev.2008.09.002
  • Anders, Y., Hardy, I., Pauen, S., & Steffensky, M. (2017). Goals of early science education between the ages of three and six and their assessment. In “Haus der kleinen Forscher” Foundation (Ed.), Early science education – Goals and process-related quality criteria for science teaching. Scientific studies on the work of the “Haus der kleinen Forscher” Foundation (Vol. 5, pp. 30–99) Opladen, Berlin, Toronto: Verlag Barbara Budrich.
  • Astington, J. W., Pelletier, J., & Homer, B. (2002). Theory of mind and epistemological development: The relation between children’s second-order false-belief understanding and their ability to reason about evidence. New Ideas in Psychology, 20, 131–144. doi:10.1016/S0732-118X(02)00005-3
  • Bullock, M., Sodian, B., & Koerber, S. (2009). Doing experiments and understanding science: Development of scientific reasoning from childhood to adulthood. In W. Schneider & M. Bullock (Eds.), Human development from early childhood to early adulthood. Findings from the Munich Longitudinal Study (pp. 173–197). Mahwah, NJ: Erlbaum.
  • Bullock, M., & Ziegler, A. (1999). Scientific reasoning: Developmental and individual differences. In F. E. Weinert & W. Schneider (Eds.), Individual development from 3 to 12. Findings from the munich longitudinal study (pp. 38–54). Cambridge, UK: Cambridge University Press.
  • Carey, S., Evans, R., Honda, M., Jay, E., & Unger, C. (1989). An experiment is when you try it and see if it works. A study of junior high school students’ understanding of the construction of scientific knowledge. International Journal of Science Education, 11, 514–529. doi:10.1207/S1532690XCI1803_3
  • Cattell, R. B., & Cattell, A. K. S. (1963). Culture fair intelligence test. Champaign, IL: Institute for Personality and Ability Testing.
  • Chen, Z., & Klahr, D. (1999). All other things being equal: Acquisition and transfer of the control of variables strategy. Child Development, 70, 1098–1120. doi:10.1111/1467-8624.00081
  • Chinn, C. A., & Brewer, W. F. (1993). The role of anomalous data in knowledge acquisition: A theoretical framework and implications for science instruction. Review of Educational Research, 63, 1–49. doi:10.3102/00346543063001001
  • Edelsbrunner, P. A., Schalk, L., Schumacher, R., & Stern, E. (2015). Pathways of conceptual change: Investigating the influence of experimentation skills on conceptual knowledge development in early science education. Proceedings of the 37th Annual Conference of the Cognitive Science Society, Pasadena, CA, 620 (Vol. 625).
  • Gopnik, A. (2012). Scientific thinking in young children: Theoretical advances, empirical research, and policy implications. Science, 337, 1623–1627. doi:10.1126/science.1223416
  • Grob, A., Meyer, C. S., & Hagmann-von Arx, P. (2009). Intelligenz- und Entwicklungsskalen (IDS). [Intelligence and Development Scales]. Bern, Switzerland: Hans Huber.
  • Guo, Y., Wang, S., Hall, A. H., Breit-Smith, A., & Busch, J. (2016). The effects of science instruction on young children’s vocabulary learning: A research synthesis. Early Childhood Education Journal, 44, 359–367. doi:10.1007/s10643-015-0721-6
  • Happé, F. G. E. (1994). An advanced test of theory of mind: Understanding of story characters’ thoughts and feelings by able autistic, mentally handicapped, and normal children and adults. Journal of Autism and Developmental Disorders, 24, 129–154. doi:10.1007/BF02172093
  • Inhelder, B., & Piaget, J. (1958). The growth of logical thinking from childhood to adolescence. New York, NY: Basic Books.
  • Kastner-Koller, U., & Deimann, P. (1998). Wiener Entwicklungstest (WET) [Vienna Development Test]. Göttingen, Germany: Hogrefe Verlag.
  • Klahr, D., & Dunbar, K. (1988). Dual space search during scientific reasoning. Cognitive Science, 12, 1–48. doi:10.1207/s15516709cog1201_1
  • Koerber, S., Mayer, D., Osterhaus, C., Schwippert, K., & Sodian, B. (2015). The development of scientific thinking in elementary school: A comprehensive inventory. Child Development, 86, 327–336. doi:10.1111/cdev.12298
  • Koerber, S., Osterhaus, C., & Sodian, B. (2015). Testing primary-school children’s understanding of the nature of science. British Journal of Developmental Psychology, 33, 57–71. doi:10.1111/bjdp.12067
  • Koerber, S., Sodian, B., Osterhaus, C., Mayer, D., Kropf, N., & Schwippert, K. (2017). Science-P.II. Modeling scientific reasoning in primary school. In D. Leutner, J. Fleischer, J. Grünkorn, & E. Klieme (Eds.), Competence assessment in education: Research, models and instruments (pp. 19–29). Berlin: Springer. doi:10.1007/978-3-319-50030-0_3
  • Koerber, S., Sodian, B., Thoermer, C., & Nett, U. (2005). Scientific reasoning in young children. Preschoolers’ ability to evaluate covariation evidence. Swiss Journal of Psychology, 64, 141–152. doi:10.1024/1421-0185.64.3.141
  • Kropf, N. (2010). Entwicklung und Analyse von Messinstrumenten zur Erfassung des wissenschaftlichen Denkens im Grundschulalter [Development and analysis of instruments for the measurement of scientific reasoning in elementary school] ( Unpublished doctoral dissertation). München, Germany: LMU München.
  • Kuhn, D. (1989). Children and adults as intuitive scientists. Psychological Review, 96, 674–689.
  • Kuhn, D. (2011). What is scientific thinking and how does it develop? In U. Goswami (Ed.), Handbook of childhood cognitive development (2nd ed., pp. 497–523). Oxford, UK: Wiley.
  • Kuhn, D., Amsel, E., & O’Loughlin, M. (1988). The development of scientific thinking skills. San Diego, CA: Academic Press.
  • Kuhn, D., Garcia-Mila, M., Zohar, A., Andersen, C., White, S. H., Klahr, D., & Carver, S. M. (1995). Strategies of knowledge acquisition. Monographs of the Society for Research in Child Development, 60, i–157. doi:10.2307/1166059
  • Kuhn, D., & Phelps, E. (1982). The development of problem-solving strategies. In H. Reese (Ed.), Advances in child development and behavior (Vol. 17, pp. 2–44). New, NY: Academic Press. doi:10.1016/S0065-2407(08)60356-0
  • Lederman, N. G. (1992). Students’ and teachers’ conceptions of the nature of science: A review of the research. Journal of Research in Science Teaching, 29, 331–359. doi:10.1002/tea.3660290404
  • Liddle, B., & Nettle, D. (2006). Higher-order theory of mind and social competence in school-age children. Journal of Cultural and Evolutionary Psychology, 4, 231–244. doi:10.1556/JCEP.4.2006.3–4.3
  • Mantzicopoulos, P., Patrick, H., & Samarapungavan, A. (2013). Science literacy in school and home contexts: Kindergarteners’ science achievement and motivation. Cognition and Instruction, 3, 62–119. doi:10.1080/07370008.2012.742087
  • Mayer, D., Sodian, B., Koerber, S., & Schwippert, K. (2014). Scientific reasoning in elementary school children: Assessment and relations with cognitive abilities. Learning & Instruction, 29, 43–55. doi:10.1016/j.learninstruc.2013.07.005
  • Miller, S. A. (2009). Children’s understanding of second-order mental states. Psychological Bulletin, 135, 749–773. doi:10.1037/a0016854
  • Morgan, P. L., Farkas, G., Hillemeier, M. M., & Maczuga, S. (2016). Science achievement gaps begin very early, persist, and are largely explained by modifiable factors. Educational Researcher, 45, 18–35. doi:10.3102/0013189X16633182
  • Morris, B. J., Croker, S., Masnick, A. M., & Zimmerman, C. (2012). The emergence of scientific reasoning. In H. Kloos, B. J. Morris, & J. L. Amaral (Eds.), Current topics in children’s learning and cognition (pp. 61–82). Rijeka, Croatia: InTech.
  • National Research Council. (2000). Inquiry and the national science education standards. Washington, DC: National Academy Press.
  • National Research Counsil. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: National Academy Press.
  • Osterhaus, C., Koerber, S., & Sodian, B. (2015). Children’s understanding of experimental contrast and experimental control: An inventory for primary school. Frontline Learning Research, 3(4), 56–94. doi:10.14786/flr.v3i4.220
  • Osterhaus, C., Koerber, S., & Sodian, B. (2016). Scaling of advanced theory-of-mind tasks. Child Development., 87, 1971–1991. doi:10.1111/cdev.12566
  • Osterhaus, C., Koerber, S., & Sodian, B. (2017). Scientific thinking in elementary school: Children’s social cognition and their epistemological understanding promote experimentation skills. Developmental Psychology, 53, 450–462. doi:10.1037/dev0000260
  • Pahnke, J., & Rösner, P. (2012). Frühe MINT-Bildung für alle Kinder–Die Initiative „Haus der kleinen Forscher “[Early MINT education for all children- the initiative „the litte children’s house“]. In U. Pfenning & O. Renn (Eds.), Wissenschafts-und Technikbildung auf dem Prüfstand (pp. 233–246). Baden Baden, Germany: Nomos Verlagsgesellschaft.
  • Perner, J. (1988). Higher-order beliefs and intentions in children’s understanding of social interaction. In J. W. Astington, P. L. Harris, & D. R. Olson (Eds.), Developing theories of mind (pp. 271–294). Cambridge, England: Cambridge University Press.
  • Piekny, J., Grube, D., & Maehler, C. (2013). The relation between preschool children’s false-belief understanding and domain-general experimentation skills. Metacognition and Learning, 8, 103–119. doi:10.1007/s11409-013-9097-4
  • Piekny, J., & Maehler, C. (2013). Scientific reasoning in early and middle childhood: The development of domain general evidence evaluation, experimentation, and hypothesis generation skills. British Journal of Developmental Psychology, 31, 153–179. doi:10.1111/j.2044-835X.2012.02082.x
  • Piekny, J., Thomsen, T., Schuchardt, K., Lessing, N., Greve, W., & Mähler, C. (2017). Kognitive Kompetenzen und kognitive Bewältigungsstrategien im Vor-und Grundschulalter [Cognitive competencies and cognitive coping strategies in pre- and elementary school age.]. Kindheit Und Entwicklung, 26(28–38). doi:10.1026/0942-5403/a000214
  • Pollmeier, J., Tröbst, S., Hardy, I., Möller, K., Kleickmann, T., Jurecka, A., & Schwippert, K. (2017). Science-P I: Modeling conceptual understanding in primary school. In D. Leutner, J. Fleischer, J. Grünkorn, & E. Klieme (Eds.), Competence assessment in education (pp. 9–17). Berlin, Germany: Springer.
  • Ruffman, T., Perner, J., Olson, D. R., & Doherty, M. (1993). Reflecting on scientific thinking: Children’s understanding of the hypothesis-evidence relation. Child Development, 64, 1617–1636. doi:10.1111/j.1467-8624.1993.tb04203.x
  • Samarapungavan, A., Mantzicopoulos, P., Patrick, H., & French, B. (2009). The development and validation of the science learning assessment (SLA): A measure of kindergarten science learning. Journal of Advanced Academics, 20, 502–535. doi:10.1177/1932202X0902000306
  • Samarapungavan, A., Patrick, H., & Mantzicopoulos, P. (2011). What kindergarten students learn in inquiry-based science classrooms. Cognition and Instruction, 29, 416–470. doi:10.1080/07370008.2011.608027
  • Schauble, L. (1996). The development of scientific reasoning in knowledge-rich contexts. Developmental Psychology, 32, 102–119. doi:10.1037/0012-1649.32.1.102
  • Schulz, L. E., & Bonawitz, E. B. (2007). Serious fun: Preschoolers engage in more exploratory play when evidence is confounded. Developmental Psychology, 43, 1045–1050. doi:10.1037/0012-1649.43.4.1045
  • Sobel, D. M., Erb, C. D., Tassin, T., & Weisberg, D. S. (2017). The development of diagnostic inference about uncertain causes. Journal of Cognition and Development, 18, 556–576. doi:10.1080/15248372.2017.1387117
  • Sodian, B., & Bullock, M. (2008). Scientific reasoning – Where are we now? Cognitive Development, 23, 431–434. doi:http://dx.doi.org/10.1016/j.cogdev.2008.09.003
  • Sodian, B., Thoermer, C., Kircher, E., Grygier, P., & Günther, J. (2002). Vermittlung von Wissenschaftsverständnis in der Grundschule [Teaching understanding the nature of science in elementary school]. Zeitschrift Für Pädagogik, 45(Supplement), 192–206.
  • Sodian, B., Zaitchik, D., & Carey, S. (1991). Young children’s differentiation of hypothetical beliefs from evidence. Child Development, 62, 753–766. doi:10.1111/j.1467-8624.1991.tb01567.x
  • Songer, N. B., & Linn, M. C. (1991). How do students’ views of science influence knowledge integration? Journal of Research in Science Teaching, 28, 761–784. doi:10.1002/tea.3660280905
  • Stathopoulou, C., & Vosniadou, S. (2007). Exploring the relationship between physics-related epistemological beliefs and physics understanding. Contemporary Educational Psychology, 32, 255–281. doi:10.1016/j.cedpsych.2005.12.002
  • Steffensky, M., Lankes, E. M., Carstensen, C. H., & Nölke, C. (2012). Alltagssituationen und Experimente: Was sind geeignete naturwissenschaftliche Lerngelegenheiten für Kindergartenkinder? [Everydaysituations and experiments: What are suitable learning opportunities for children?]. Zeitschrift Für Erziehungswissenschaft, 15, 37–54. doi:10.1007/s11618-012-0262-3
  • Stender, A., Schwichow, M., Zimmerman, C., & Härtig, H. (2018). Making inquiry-based science learning visible: The influence of CVS and cognitive skills on content knowledge learning in guided inquiry. International Journal of Science Education, 40, 1812–1831. doi:10.1080/09500693.2018.1504346
  • Sullivan, K., Zaitchik, D., & Tager-Flusberg, H. (1994). Preschoolers can attribute second-order beliefs. Developmental Psychology, 30, 395–402. doi:10.1037/0012-1649.30.3.395
  • van der Graaf, J., Segers, E., & Verhoeven, L. (2015). Scientific reasoning abilities in kindergarten: Dynamic assessment of the control of variables strategy. Instructional Science, 43, 381–400. doi:10.1007/s11251-015-9344-y
  • van der Graaf, J., Segers, E., & Verhoeven, L. (2016). Scientific reasoning in kindergarten: Cognitive factors in experimentation and evidence evaluation. Learning and Individual Differences, 49, 190–200. doi:10.1016/j.lindif.2016.06.006
  • Vosniadou, S., Ioannides, C., Dimitrakopoulou, A., & Papademetriou, E. (2001). Designing learning environments to promote conceptual change in science. Learning and Instruction, 11, 381–419. doi:10.1016/S0959-4752(00)00038-4
  • Wilkening, F., & Sodian, B. (2005). Scientific reasoning in young children: Introduction. Swiss Journal of Psychology, 64, 137–139. doi:10.1024/1421-0185.64.3.137
  • Wu, M. L., Adams, R. J., & Wilson, M. R. (2007). ACER ConQuest version 2.0: Generalised item response modelling software. Camberwell, Australia: ACER Press.
  • Zimmerman, C. (2007). The development of scientific-thinking skills in elementary and middle school. Developmental Review, 27, 172–223. doi:10.1016/j.dr.2006.12.001

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.