497
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Nucleoside Azide–Alkyne Cycloaddition Reactions Under Solvothermal Conditions or Using Copper Vials in a Ball Mill

, , , , , , , , , & show all
Pages 361-370 | Received 29 Sep 2014, Accepted 19 Dec 2014, Published online: 15 Apr 2015

REFERENCES

  • Tornoe, C.W.; Christensen, C.; Meldal, M. Peptidotriazoles on solid phase: 1,2,3 -triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem. 2002, 67, 3057–3064.
  • Rostovtsev, V.V.; Green, L.G.; Fokin, V.V.; Sharpless, K.B. A stepwise Huisgen cycloaddition process: Copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed. 2002, 41, 2596–2599.
  • Gramlich, P.M.E.; Wirges, C.T.; Manetto, A.; Carell, T. Postsynthetic DNA modification through the copper-catalyzed azide–alkyne cycloaddition reaction. Angew. Chem. Int. Ed. 2008, 47, 8350–8358.
  • El-Sagheer, A.H.; Brown, T. Click chemistry with DNA. Chem. Soc. Rev. 2010, 39, 1388–1405.
  • Rubner, M.M.; Achatz, D.E.; Mader, H.S.; Stolwijk, J.A.; Wegener, J.; Harms, G.S.; Wolfbeis, O.S.; Wagenknecht, H.-A. DNA “Nanolamps”: “Clicked” DNA conjugates with photon upconverting nanoparticles as highly emissive biomaterial. Chempluschem 2012, 77, 129–134.
  • Chevolot, Y.; Laurenceau, E.; Phaner-Goutorbe, M.; Monnier, V.; Souteyrand, E.; Meyer, A.; Gehin, T.; Vasseur, J.J.; Morvan, F. DNA directed immobilization glycocluster array: applications and perspectives. Curr. Opin. Chem. Biol. 2014, 18, 46–54.
  • Lee, C.Y.; Held, R.; Sharma, A.; Baral, R.; Nanah, C.; Dumas, D.; Jenkins, S.; Upadhaya, S.; Du, W.J. Copper-Granule-Catalyzed Microwave-Assisted click synthesis of polyphenol dendrimers. J. Org. Chem. 2013, 78, 11221–11228.
  • Alonso, F.; Moglie, Y.; Radivoy, G.; Yus, M. Copper nanoparticles in click chemistry: an alternative catalytic system for the cycloaddition of terminal alkynes and azides. Tetrahedron Lett. 2009, 50, 2358–2362.
  • Lipshutz, B.H.; Taft, B.R. Heterogeneous copper-in-charcoal-catalyzed click chemistry. Angew. Chem. Int. Ed. 2006, 45, 8235–8238.
  • Kappe, C.O.; Van der Eycken, E. Click chemistry under non-classical reaction conditions. Chem. Soc. Rev. 2010, 39, 1280–1290.
  • Wang, G.W. Mechanochemical organic synthesis. Chem. Soc. Rev. 2013, 42, 7668–7700.
  • Gawande, M.B.; Bonifacio, V.D.B.; Luque, R.; Branco, P.S.; Varma, R.S. Solvent-Free and Catalysts-Free chemistry: A benign pathway to sustainability. Chem. Sus. Chem. 2014, 7, 24–44.
  • Rodriguez, B.; Bruckmann, A.; Rantanen, T.; Bolm, C. Solvent-free carbon-carbon bond formations in ball mills. Adv. Synth. Catal. 2007, 349, 2213–2233.
  • Kaupp, G. Organic solid-state reactions with 100% yield. Top. Curr. Chem. 2005, 254, 95–183.
  • Sikchi, S.A.; Hultin, P.G. Solventless protocol for efficient bis-N-boc protection of adenosine, cytidine, and guanosine derivatives. J. Org. Chem. 2006, 71, 5888–5891.
  • Ravalico, F.; James, S.L.; Vyle, J.S. Synthesis of nucleoside analogues in a ball mill: fast, chemoselective and high yielding acylation without undesirable solvents. Green Chem. 2011, 13, 1778–1783.
  • Giri, N.; Bowen, C.; Vyle, J.S.; James, S.L. Fast, quantitative nucleoside protection under solvent-free conditions. Green Chem. 2008, 10, 627–628.
  • Ravalico, F.; Messina, I.; Berberian, M.V.; James, S.L.; Migaud, M.E.; Vyle, J.S. Rapid synthesis of nucleotide pyrophosphate linkages in a ball mill. Org. Biomol. Chem. 2011, 9, 6496–6497.
  • Zhou, L.; Amer, A.; Korn, M.; Burda, R.; Balzarini, J.; De Clercq, E.; Kern, E.R.; Torrence, P.F. Synthesis and antiviral activities of 1,2,3-triazole functionalized thymidines: 1,3-dipolar cycloaddition for efficient regioselective diversity generation. Antivir. Chem. Chemother. 2005, 16, 375–383.
  • Godeau, G.; Barthelemy, P. Glycosyl-nucleoside lipids as low-molecular-weight gelators. Langmuir 2009, 25, 8447–8450.
  • Schulz, J.; Vimont, D.; Bordenave, T.; James, D.; Escudier, J.M.; Allard, M.; Szlosek-Pinaud, M.; Fouquet, E. Silicon-Based chemistry: An original and efficient one-step approach to F-18-nucleosides and F-18-oligonucleotides for PET imaging. Chem. Eur. J. 2011, 17, 3096–3100.
  • Chen, L.Q.; Wilson, D.J.; Xu, Y.L.; Aldrich, C.C.; Felczak, K.; Sham, Y.Y.; Pankiewicz, K.W. Triazole-Linked inhibitors of inosine monophosphate dehydrogenase from human and mycobacterium tuberculosis. J. Med. Chem. 2010, 53, 4768–4778.
  • Swarbrick, J.M.; Graeff, R.; Garnham, C.; Thomas, M.P.; Galione, A.; Potter, B.V.L. ‘Click cyclic ADP-ribose’: A neutral second messenger mimic. Chem. Commun. 2014, 50, 2458–2461.
  • Rye, C.S.; Baell, J.B. Phosphate isosteres in medicinal chemistry. Curr. Med. Chem. 2005, 12, 3127–3141.
  • Beyer, C.; Wagenknecht, H.-A. Synthesis of DNA with spirobenzopyran as an internal covalent modification. Synlett 2010, 1371–1376.
  • Freeman, C.; Vyle, J.S.; Heaney, F. Oligo switches: photoresponsive oligonucleotide conjugates by solid-supported click chemistry. RSC Adv. 2013, 3, 1652–1655.
  • Horwitz, J.P.; Tomson, A.J.; Urbanski, J.A.; Chua, J.; Nucleosides, I. 5′-Amino-5′-deoxyuridine and 5′-Amino-5′-deoxythymidine. J Org. Chem. 1962, 27, 3045–3048.
  • Cheng, K.L.; Bray, R.H. 1-(2-Pyridylazo)-2-naphthol as a possible analytical reagent. Anal. Chem. 1955, 27, 782–785.
  • Listkowski, A.; Ing, P.; Cheaib, R.; Chambert, S.; Doutheau, A.; Queneau, Y. Carboxymethylglycoside lactones (CMGLs): structural variations on the carbohydrate moiety. Tetrahedron Asymmetry 2007, 18, 2201–2210.
  • Cook, T.L.; Walker, J.A.; Mack, J. Scratching the catalytic surface of mechanochemistry: a multi-component CuAAC reaction using a copper reaction vial. Green Chem. 2013, 15, 617–619.
  • Tomlinson, M.L. The reduction of p-nitrobenzoic acid to Hydrazo- and Azo-benzene-4,4′-dicarboxylic acids by means of glucose. J. Chem. Soc. 1946, 756.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.