578
Views
21
CrossRef citations to date
0
Altmetric
Reviews

Excited-State Proton Transfer and Phototautomerism in Nucleobase and Nucleoside Analogs: A Mini-Review

Pages 626-644 | Received 14 Feb 2014, Accepted 02 Apr 2014, Published online: 08 Aug 2014

REFERENCES

  • Leonard, N.J. Adenylates: bound and unbound. Biopolymers 1985, 24, 9–28.
  • Tor, Y. Exploring RNA-ligand interactions. Pure Appl. Chem. 2009, 81, 263–272.
  • Juskowiak, B. Nucleic acid-based fluorescent probes and their analytical potential. Anal. Bioanal. Chem. 2011, 399, 3157–3176.
  • Tanpure, A.A.; Pawar, M.G.; Srivatsan, S.G. Fluorescent nucleoside analogs: probes for investigating nucleic acid structure and function. Israel J. Chem. 2013, 53, 366–378.
  • Sinkeldam, R.W.; Greco, N.J.; Tor, Y. Fluorescent analogs of biomolecular building blocks: design, properties, and applications. Chem. Revs. 2010, 110, 2579–2619.
  • Shin, D.; Sinkeldam, R.W.; Tor, Y. Emissive RNA alphabet. J. Am. Chem. Soc. 2011, 133, 14912–14915.
  • Srivatsan, S.G.; Sawant, A.A. Fluorescent ribonucleoside analogues as probes for investigating RNA structure and function. Pure Appl. Chem. 2011, 83, 213.
  • Okamoto, A., Saito, Y., Saito, I. Design of base-discriminating fluorescent nucleosides, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2005, 6, 108–122
  • Kierdaszuk, B.; Modrak-Wójcik, A.; Wierzchowski, J.; Shugar, D. Formycin A and its N-methyl analogues, specific inhibitors of E. coli purine nucleoside phosphorylase: induced tautomeric shift on binding to enzyme, and enzyme → ligand fluorescence resonance energy transfer. Biochim. Biophys. Acta 2000, 1476, 109–128.
  • Wierzchowski, J.; Bzowska, A.; Stępniak, K.; Shugar, D. Interactions of calf spleen purine nucleoside phosphorylase with 8-azaguanine, and a bisubstrate analogue inhibitor: implications for the reaction mechanism. Z. Naturforsch. C 2004, 59c, 713–725.
  • Wierzchowski, J.; Stępniak, K.; Bzowska, A.; Shugar, D. Spectroscopic and kinetic studies of interactions of calf spleen purine nucleoside phosphorylase with 8-azaguanine and its 9-(2-phosphonylmethoxyethyl) derivative. Nucleos., Nucleot., Nucl. Acids 2005, 24, 459–464.
  • Shcherbakova, I.; Elguero, J.; Katritzky, A.R. Tautomerism of heterocycles: condensed five-six, five-five, and six-six ring systems with heteroatoms in both rings. Adv. Heterocycl. Chem. 2000, 77, 51–113.
  • Elguero, J.; Katritzky, A.R.; Denisko, O.V. Prototropic tautomerism of heterocycles: heteroaromatic tautomerism—general overview and methodology. Adv. Heterocycl. Chem. 2000, 76, 1–84.
  • Boerresen, H.C. Fluorescence and tautomerism of protonated and methylated adenine derivatives. Acta Chim. Scand. 1967, 21, 2463–2473.
  • Eastman, J.W. The fluorescence and tautomerism of adenine. Ber. Bunsenges. Physik. Chemie 1969, 73, 407–412.
  • Wilson, M.; Callis, P.R. Prototropic tautomeris and the apparent photophysics of adenine and guanine. Photochem. Photobiol. 1980, 31, 323–327.
  • Wierzchowski, J.; Shugar, D. Luminescence studies on formycin, its aglycone, and their N-methyl derivatives: tautomerism, sites of protonation and phototautomerism. Photochem. Photobiol. 1982, 35, 445–458.
  • Wierzchowski, J.; Wielgus-Kutrowska, B.; Shugar, D. Fluorescence emission properties of 8-azapurines and their nucleosides, and application to the kinetics of the reverse synthetic reaction of purine nucleoside phosphorylase. Biochim. Biophys. Acta 1996, 1290, 9–17.
  • Ireland, J.F.; Wyatt, P.A.H. Acid-base properties of electronically excited states of organic molecules. Adv. Phys. Org. Chem. 1976, 12, 131–221.
  • Leonard, N.J. Etheno-substituted nucleotides and coenzymes: fluorescence and biological activity. CRC Crit. Revs. Biochem. 1984, 15, 125–199.
  • Wierzchowski, J. Excited-state proton transfer in nucleic acid bases, nucleosides, and their analogues: a mini-review. Curr. Topics Biophys. Online (Poznan, Poland), 2010, 33, 9–16. http://www.staff.amu.edu.pl/∼ctbo/issue33/v33_9.pdf
  • Agmon, N. Elementary steps in excited-state proton transfer. J. Chem. Phys. A 2005, 109, 13–35.
  • Valeur, B. Molecular Fluorescence, Wiley-VCH, Weinheim, 2002, pp. 99–109.
  • Grabowski, Z.R.; Grabowska, A. The Förster cycle reconsidered. Z. Phys. Chem. N. Folge 1976, 104, 197–208.
  • Förster, T. Die pH-abhangigkeit der Fluoreszenz von Naphtalinderivaten. Z. Elektrochem. 1950, 54, 531–553.
  • Grabowski, Z.R.; Rubaszewska, W. Generalised Förster cycle. Thermodynamic and extrathermodynamic relationships between proton transfer, electron transfer and electronic excitation. J. Chem. Soc. Faraday Trans. 1, 1977, 73, 11–28.
  • Mulder, W.H. Effect of medium relaxation on the acidity constants of electronically excited states obtained by the Förster cycle method. J. Photochem. Photobiol. A. 2003, 161, 21–35.
  • Schulman, S.G.; Capomacchia, A.C. Variations of fluorescence quantum yields with pH or Hammett acidity. Near equilibrium vs. non-equilibrium excited state proton exchange. J. Phys. Chem. 1975, 79, 1337–1343.
  • Tolbert, L.M.; Solntsev, K.M. Excited-state proton transfer: from constrained systems to “super” photo-acids to super-fast proton transfer. Acc. Chem. Res. 2002, 35, 19–27.
  • Solntsev, K.M.; Clower, C.E.; Tolbert, L.M.; Huppert, D. 6-Hydroxyquinoline-N-oxides: a new class of “Super” photoacids. J. Am. Chem. Soc. 2005, 127, 8534.
  • Leiderman, P.; Genosar, L.; Huppert, D. Excited-state proton transfer: indication of three steps in the dissociation and recombination process. J. Phys. Chem. A 2005, 109, 5965–5977.
  • Sekiya, H.; Sakota, K. Excited-state double-proton transfer in a model DNA base pair: resolution for stepwise and concerted mechanism controversy in the 7-azaindole dimer revealed by frequency- and time-resolved spectroscopy. J. Photochem. Photobiol. C 2008, 9, 81–91.
  • Kohtani, S.; Tagami, A.; Nakagaki, R. Excited-state proton transfer of 7-hydroxyquinoline in a non-polar medium: mechanism of triple proton transfer in the hydrogen-bonded system. Chem. Phys. Lett. 2000, 316, 88–93.
  • Htun, T. Excited-state proton transfer in nonaqueous solvent. J. Fluoresc. 2003, 13, 323–329.
  • Gerega, A.; Lapinski, L.; Nowak, M.J.; Rostkowska, H. UV-induced Oxo → Hydroxy unimolecular proton transfer reactions in hypoxanthine. J. Phys. Chem. A 2006, 110, 10236–10244.
  • Kitamura, T.; Hikita, A.; Ishikawa, H.; Fujimoto, A. Photoinduced amino–imino tautomerization reaction in 2-aminopyrimidine and its methyl derivatives with acetic acid. Spectrochim. Acta Part A 2005, 62, 1157–1164.
  • Zhao, J.; Ji, S.; Chen, Y.; Guo, H.; Yang, P. Excited state intramolecular proton transfer (ESIPT): from principal photophysics to the development of new chromophores and applications in fluorescent molecular probes and luminescent materials. Phys. Chem. Chem. Phys. 2012, 14, 8803–8817.
  • Waluk, J. Proton or hydrogen transfer? Charge distribution analysis. Pol. J. Chem. 2008, 82, 947–962.
  • Sepioł, J. Role of substituents in excited state intramolecular proton transfer (ESIPT) processes. Pol. J. Chem. 2009, 83, 1671–1692.
  • Taylor, C.A.; El-Bayoumi, M.A.; Kasha, M. Excited state two-proton tautomerism in hydrogen-bonded N-heterocyclic base pairs. Proc. Natl. Acad. Sci. U.S.A. 1969, 63, 253–260.
  • Sakota, K.; Jouvet, C.; Dedonder, C.; Fujii, M.; Sekiya, H. Excited-state triple-proton transfer in 7-azaindole(H2O) 2 and reaction path studied by electronic spectroscopy in the gas phase and quantum chemical calculations. J. Phys. Chem. A 2010, 114, 11161–11166.
  • Yu, X.-F.; Yamazaki, S.; Taketsugu, T. Theoretical study on water-mediated excited-state multiple proton transfer in 7-azaindole: significance of hydrogen bond rearrangement. J. Phys. Chem. A 2012, 116, 10566–10573.
  • Ishikawa, H.; Nakano, T.; Takashima, T.; Yabuguchi, H., Fuke, K. Deuteration effect on the NH/ND stretch band of the jet-cooled 7-azaindole and its tautomeric dimers: relation between the vibrational relaxation and the ground-state double proton-transfer reaction. Chem. Phys. 2013, 419, 101–106.
  • Wang, K.; Stringfellow, S.; Dong, S.; Jiao, Y.; Yu, H. Synthesis and fluorescence study of 7-azaindole in DNA oligonucleotides replacing a purine base. Spectrochim. Acta – Part A 2002, 58, 2595–2603.
  • Cioni, P.; Erijman, L.; Strambini, G.B. Phosphorescence emission of 7-azatryptophan and 5-hydroxytryptophan in fluid solutions and in α2 RNA polymerase. Biochem. Biophys. Res. Commun. 1998, 248, 347–351.
  • Rogers, J.M.G.; Lippert, L.G.; Gai, F. Non-natural amino acid fluorophores for one- and two-step fluorescence resonance energy transfer applications. Analyt. Biochem. 2010, 399, 182–189.
  • Merkel, L.; Hoesl, M.G.; Albrecht, M.; Schmidt, A.; Budisa, N. Blue fluorescent amino acids as in vivo building blocks for proteins. Chem. Bio. Chem. 2010, 11, 305–314.
  • Takahashi, S.; Nishimura, Y.; Tsuboi, M. Rate of photochemical protonation and electronic relaxation of excited 1,N6-ethenoadenosine in its aqueous solution. J. Chem. Phys. 1981, 75, 3831–3837.
  • Inoue, Y.; Kuramochi, T.; Imakubo, K. Protonation and quaternization of 1,N6-ethenoadenosine: what are the species responsible for the fluorescence of 1,N6-ethenoadenosine? Biopolymers 1979, 18, 2175–2194.
  • Agbaria, R.A.; Parola, A.H.; Gill, D. Proton transfer and n → π* transition in the photophysics of 1,N6-ethenoadenosine. J. Phys. Chem. 1994, 98, 13280–13285.
  • Ward, D.C.; Reich, E.; Stryer, L. Fluorescence studies of nucleotides and polynucleotides. I. Formycin, 2-aminopurine riboside, 2,6-diaminopurine riboside, and their derivatives. J. Biol. Chem. 1969, 244, 1228–1237.
  • Schlosser, A.; Nawrot, B.; Grillenbeck, N.; Sprinzl, M. Fluorescence-monitored conformational change on the 3′-end of tRNA upon aminoacylation. J. Biomol. Struct. Dynamics 2001, 19, 285–291.
  • Stepinski, J.; Zuberek, J.; Jemielity, J.; Kalek, M.; Stolarski, R.; Darzynkiewicz, E. Novel dinucleoside 5′,5′-triphosphate cap analogues. Synthesis and affinity for murine translation factor eiF4E. Nucleos., Nucleot., Nucl. Acids 2005, 24, 629–633.
  • Karlish, S.J.D. Use of formycin nucleotides, intrinsic protein fluorescence, and fluorescein isothiocyanate-labeled enzymes for measurement of conformational states of Na+, K+-ATPase. Method Enzymol. 1988, 156, 271–277.
  • Wierzchowski, J.; Szczęśniak, M.; Shugar, D. Fluorescence emission properties of the cation of 4-aminopyrazolo[3,4-d]pyrimidine, an adenine analogue: evidence for phototautomerism. Z. Naturforsch. C 1980, 35c, 878–889.
  • Seela, F.; Becher, G. Synthesis, base pairing, and fluorescence properties of oligonucleotides containing 1H-pyrazolo[3,4-d]pyrimidin-6-amine (8-aza-7-deazapurin-2-amine) as an analogue of purin-2-amine. Helv. Chim. Acta 2000, 83, 928–942.
  • Albert, A. Chemistry of 8-azapurines. Adv. Heterocycl. Chem. 1986, 39, 117–178.
  • Giorgi, I.; Scartoni, V. 8-Azapurine nucleus: a versatile scaffold for different targets. Mini-Revs. Med. Chem. 2009, 9, 1367–1378.
  • Seela, F.; Javelakar, A.M.; Munster, I. Replacement of canonical DNA nucleobses by benzotriazole and triazolo[4,5-d]pyrimidine: synthesis, fluorescence and ambiguous base pairing. Helvetica Chim. Acta 2005, 88, 751–765.
  • Mędza, G.; Wierzchowski, J.; Kierdaszuk, B.; Shugar, D. Fluorescence emission properties of 8-aza analogues of caffeine, theophylline, and related N-alkyl xanthines. Bioorg. Med. Chem. 2009, 17, 2585–2591.
  • Jiang, D.; Seela, F. Oligonucleotide duplexes and multistrand assemblies with 8-aza-2′-deoxyisoguanosine: a fluorescent isoGd shape mimic expanding the genetic alphabet and forming ionophores. J. Am. Chem. Soc. 2010, 132, 4016–40124.
  • Seela, F.; Jiang, D.; Budow, S. Triplexes with 8-aza-2′-deoxyisoguanosine replacing protonated dC: probing third strand stability with a fluorescent nucleobase targeting duplex DNA. Chem. Bio. Chem. 2010, 11, 1443–1450.
  • Liu, L.; Cottrell, J.W.; Scott, L.G.; Fedor, M.J. Direct measurement of the ionization state of an essential guanine in the hairpin ribozyme. Nat. Chem. Biol. 2009, 5, 351–357.
  • Cottrell, J.W.; Scott, L.G.; Fedor, M.J. The pH dependence of hairpin ribozyme catalysis reflects ionization of an active site adenine. J. Biol. Chem. 2011, 286, 17658–17664.
  • Viladoms, J.; Scott, L.G.; Fedor, M.J. An active-site guanine participates in glms ribozyme catalysis in its protonated state. J. Am. Chem. Soc. 2011, 133, 18388–18396.
  • L’abbé, G.; Persoons, M.-A.; Toppet, S. Study of the prototropic tautomerism of 8-azatheophylline by 13C and 15N NMR spectroscopy. Magnet. Res. Chem. 1987, 25, 362–364.
  • Wierzchowski, J.; Sepioł, J.; Sulikowski, D.; Kierdaszuk, B.; Shugar, D. Fluorescence emission properties of 8-azaxanthine and its N-methyl derivatives: ground- and excited state tautomerism. J. Photochem. Photobiol. A 2006, 179, 276–282.
  • Hutzenlaub, W.; Tolman, R.L.; Robins, R.K. Azapurine nucleosides. 1. Synthesis and antitumor activity of certain 3-β-D-ribofuranosyl- and 2′-deoxy-D-ribofuranosyl-ν-triazolo [4,5-d] pyrimidines. J. Med. Chem. 1972, 15, 879–883.
  • Sepiol, J.; Kazimierczuk, Z.; Shugar, D. Tautomerism of isoguanosine and solvent induced keto-enol equilibrium. Z. Naturforsch. C 1976, 31c, 361–370.
  • Wierzchowski, J.; Mędza, G.; Sepioł, J.; Szabelski, M.; Shugar, D. Fluorescence emission properties of 8-azaisoguanine and its N-methyl derivatives: ground- and excited state tautomerism. J. Photochem. Photobiol. A 2012, 237, 64–70.
  • Stepchenko, V.A.; Seela, F.; Esipov, R.S.; Miroshnikov, A.I.; Sokolov, Y.A.; Mikhailopulo, I.A. Enzymatic synthesis of 2-deoxy-β-d-ribonucleosides of 8-azapurines and 8-aza-7-deazapurines. Synlett 2012, 23, 1541–1545.
  • Wierzchowski, J.; Mędza, G.; Szabelski, M.; Stachelska-Wierzchowska, A. Properties of 2,6-diamino-8-azapurine, a highly fluorescent purine analog and its N-alkyl derivatives: tautomerism and excited-state proton transfer reactions. J. Photochem. Photobiol. A 2013, 265, 49–57.
  • Montgomery, J.A.; Shortnacy, A.T.; Secrist, J.A. III. Synthesis and biological evaluation of 2-fluoro-8-azaadenosine and related compounds. J. Med. Chem. 1983, 26, 1483–1489.
  • Seela, F.; Lampe, S. 8-Aza-2′-deoxyguanosine and related 1,2,3-triazolo[4,5-d]pyrimidine 2′-deoxyribofuranosides. Helv. Chim. Acta 1993, 72, 2388–2397.
  • Stachelska-Wierzchowska, A.; Wierzchowski, J.; Wielgus-Kutrowska, B.; Mikleusevic, G. Enzymatic synthesis of highly fluorescent 8-azapurine ribosides using purine-nucleoside phosphorylase reverse reaction: variable ribosylation sites. Molecules 2013, 18, 12587–12598.
  • Wierzchowski, J.; Stachelska-Wierzchowska, A.; Wielgus-Kutrowska, B.; Mikleusevic, G. Two fluorogenic substrates for purine-nucleoside phosphorylase, selective for mammalian and bacterial forms of the enzyme. Analyt. Biochem. 2014, 446, 25–27.
  • Wenska, G.; Skalski, B.; Insinska, M.; Paszyc, S.; Verrall, R.E. Ground and excited state prototropic behavior of 1-(purin-6-yl)-3-methylimidazolium chloride. J. Photochem. Photobiol. A 1997, 108, 135–142.
  • Kitamura, T.; Okita, M.; Sasaki, Y.; Ishikawa, H.; Fujimoto, A. Amino–imino tautomerization reaction of the 4-aminopyrimidine/acetic acid system. Spectrochim. Acta A 2008, 69, 350–360.
  • Klein, R.; Tatischeff, I. Tautomerism and fluorescence of lumazine. Photochem. Photobiol. 1987, 45, 55–65.
  • Presiado, I.; Erez, Y.; Gepshtein, R.; Huppert, D. Excited-state intermolecular proton transfer of lumazine. J. Phys. Chem. C 2010, 114, 3634–3640.
  • Denofrio, M.P.; Thomas, A.H.; Braun, A.M.; Oliveros, E.; Lorente, C. Comment on “excited-state intermolecular proton transfer of lumazine.” J. Phys. Chem. C 2010, 114, 14307–14308.
  • Moyon, N.S.; Gashnga, P.M.; Phukan, S.; Mitra, S. Specific solvent effect on lumazine photophysics: a combined fluorescence and intrinsic reaction coordinate analysis. Chem. Phys. 2013, 421, 22–31.
  • Saleh, N.; Graham, J.; Afaneh, A.; Al-Soud, Y.A.; Schreckenbach, G.; Esmadi, F.T. Pteridine-based fluorescent pH sensors designed for physiological applications. J. Photochem. Photobiol. A 2012, 247, 63–73.
  • Song, P.-S.; Sun, M.; Koziolowa, A.; Koziol, J. Phototautomerism of lumichromes and alloxazines. J. Am. Chem. Soc. 1974, 96, 4319–4323.
  • Sikorska, E.; Szymusiak, H.; Khmelinskii, I.V.; Koziołowa, A.; Spanget-Larsen, J.; Sikorski, M. Spectroscopy and photophysics of alloxazines studied in their ground and first excited singlet states. J. Photochem. Photobiol. A 2003, 158, 45–53.
  • Abou-Zied, O.K. Examining [2,2′-bipyridyl]-3,3′-diol as a possible DNA model base pair. J. Photochem. Photobiol. A 2006, 182, 192–201.
  • Dziuba, D.; Postupalenko, V.Y.; Spadafora, M.; Klymchenko, A.S.; Guérineau, V.; Mély, Y.; Benhida, R.; Burger, A. A universal nucleoside with strong two-band switchable fluorescence and sensitivity to the environment for investigating DNA interactions. J. Am. Chem. Soc. 2012, 134, 10209–10213.
  • Klymchenko, A.S.; Shvadchak, V.V.; Yushchenko, D.A.; Jain, N.; Mély, Y. Excited-state intramolecular proton transfer distinguishes microenvironments in single-and double-stranded DNA. J. Phys. Chem. B 2008, 112, 12050–12055.
  • Dumas, A.; Luedtke, N.W. Site-specific control of N7-metal coordinatiopn in DNA by a fluorescent purine derivative. Chem. Eur. J. 2012, 18, 245–254.
  • Santhosh, C.; Mishra, P.C. Electronic spectra of 2-aminopurine and 2,6-diaminopurine: phototautomerism and fluorescence reabsorption. Spectrochim. Acta A 1991, 47, 1685–1693.
  • Sobolewski, A.L.; Domcke, W. Molecular mechanisms of the photostability of life. Phys. Chem. Chem. Phy. 2010, 12, 4897–4898.
  • Perun, S.; Sobolewski, A.L.; Domcke, W. Role of electron-driven proton-transfer processes in the excited-state deactivation of the adenine-thymine base pair. J. Phys. Chem. A 2006, 110, 9031–9038.
  • De La Harpe, K.; Crespo-Hernández, C.E.; Kohler, B. Deuterium isotope effect on excited-state dynamics in an alternating GC oligonucleotide. J. Am. Chem. Soc. 2009, 131, 17557–17559.
  • Kosma, K.; Schröter, C.; Samoylova, E.; Hertel, I.V.; Schultz, T. Excited-state dynamics of cytosine tautomers. J. Am. Chem. Soc. 2009, 131, 16939–16943.
  • Szczesniak, M.; Nowak, M.J.; Rostkowska, H.; Szczepaniak, K.; Person, W.B.; Shugar, D. Matrix isolation studies of nucleic acid constituents. 1. Infrared spectra of uracil monomers. J. Am. Chem. Soc. 1983, 105, 5969–5976.
  • Szczepaniak, K.; Person, W.B.; Leszczynski, J.; Kwiatkowski, J.S. Matrix isolation and DFT quantum mechanical studies of vibrational spectra of uracil and its methylated derivatives. Pol. J. Chem. 1998, 72, 402–420.
  • Chmura, B.; Rode, M.F.; Sobolewski, A.L.; Lapinski, L.; Nowak, M.J. A computational study on the mechanism of intramolecular oxo-hydroxy phototautomerism driven by repulsive πσ*state. J. Phys. Chem. A 2008, 112, 13655–13661.
  • Remington, S.J. Fluorescent proteins: maturation, photochemistry and photophysics. Curr. Opin. Struct. Biol. 2006, 16, 714–721.
  • Meech, S.R. Excited state reactions in fluorescent proteins. Chem. Soc. Rev. 2009, 38, 2922–2934.
  • Demchenko, A.P.; Tang, K.-C.; Chou, P.-T. Excited-state proton coupled charge transfer modulated by molecular structure and media polarization. Chem. Soc. Rev. 2013, 42, 1379–1408.
  • Klymchenko, A.S.; Demchenko, A.P. Multiparametric probing of microenvironment with solvatochromic fluorescent dyes. Method Enzymol. 2008, 450, 37–58.
  • Wierzchowski, J.; Kulikowska, E.; Bzowska, A.; Holy, A.; Magnowska, L.; Shugar, D. Interactions of purine nucleoside phosphorylase with antiviral acyclic nucleoside phosphonate inhibitors – kinetics and emission studies. Nucleos. Nucleot. 1999, 18, 875–876.
  • Okamoto, A.; Saito, Y.; Saito, I. Design of base-discriminating fluorescent nucleosides. J. Photochem. Photobiol. A, 2005, 6, 108–122.
  • Phelps, K.; Morris, A.; Beal, P.A. Novel modifications in RNA. ACS Chem. Biol. 2012, 7, 100–112.
  • Faraji, S.; Dreuw, A. Proton-transfer-steered mechanism of photolesion repair by (6–4)-photolyases. J. Phys. Chem. Lett. 2012, 3, 227–230.
  • Drobnik, J.; Augenstein, L. Spectroscopic studies of purines – I. Factors affecting the first excited levels of purine. Photochem. Photobiol. 1966, 5, 13–30.
  • Onidas, D.; Markovitsi, D.; Marguet, S.; Sharonov, A.; Gustavsson, T. Fluorescence properties of DNA nucleosides and nucleotides: a refined steady-state and femtosecond investigation. J. Phys. Chem. B 2002, 106, 11367–11374.
  • Saigusa, H. Excited-state dynamics of isolated nucleic acid bases and their clusters. J. Photochem. Photobiol. C 2006, 7, 197–210.
  • Budowa, S.; Seela, F. 2-Azapurine nucleosides: synthesis, properties, and base pairing of oligonucleotides. Chem Biodivers 2010, 7, 2145–2190.
  • Hawkins, M.E. Fluorescent pteridine probes for nucleic acid analysis. Method Enzymol. 2008, 450, 201–231.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.