235
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Selective Phosphorylation of South and North-Cytidine and Adenosine Methanocarba-Nucleosides by Human Nucleoside and Nucleotide Kinases Correlates with Their Growth Inhibitory Effects on Cultured Cells

, &
Pages 544-564 | Received 28 Jul 2014, Accepted 16 Mar 2015, Published online: 13 Jul 2015

REFERENCES

  • Marquez, V.E.; Siddiqui, M.A.; Ezzitouni, A.; Russ, P.; Wang, J.; Wagner, R.W.; Matteucci, M.D. Nucleosides with a twist. Can fixed forms of sugar ring pucker influence biological activity in nucleosides and oligonucleotides? J. Med. Chem. 1996, 39, 3739–3747.
  • Marquez, V.E.; Ben-Kasus, T.; Barchi, J.J.; Green, K.M.; Nicklaus, M.C.; Agbaria, R. Experimental and structural evidence that herpes 1 kinase and cellular DNA polymerase(s) discriminate on the basis of sugar pucker. J. Am. Chem. Soc. 2004, 126, 543–549.
  • Boyer, P.L.; Julias, J.G.; Victor, E. Marquez, V.E.; Stephen, H. Hughes, S.H. Fixed conformation nucleoside analogs effectively inhibit excision-proficient HIV-1 Reverse transcriptases. J. Mol. Biol. 2005, 345, 441–450.
  • Marquez, V.E.; Russ, P.; Alonso, R.; Siddiqui, M.A.; Shin, K.J.; George, C.; Nicklaus, M.C.; Dai, F.; Ford, H. Jr. Conformationally restricted nucleosides. The reaction of adenosine deaminase with substrates built on a bicyclo[3.1.0]hexane template. Nucleosides Nucleotides Nucleic Acids 1999, 18, 521–530.
  • Marquez, V.E.; Schroeder, G.K.; Ludek, O.R.; Siddiqui, M.A.; Ezzitouni, A.; Wolfenden, R. Contrasting behaviour of conformationally locked carbocyclic nucleosides of adenosine and cytidine as substrates for deaminases. Nucleosides Nucleotides Nucleic Acids 2009, 28, 614–632.
  • Ford, H. Jr.; Dai, F.; Mu, L.; Siddiqui, M.A.; Nicklaus, M.C.; Anderson, L.; Marquez, V.E.; Barchi, J.J. Jr. Adenosine deaminase prefers a distinct sugar ring conformation for binding and catalysis: kinetic and structural studies. Biochemistry 2004, 39, 2581–2592.
  • Marquez, V.E.; Ezzitouni, A.; Russ, P.; Siddiqui, M.A.; Ford, H. Jr.; Feldman, R.J.; Mitsuya, H.; George, C.; Barchi, J.J. Jr. HIV-1 reverse transcriptase can discriminate between TwoConformationally locked carbocyclic AZT triphosphate analogues. J. Am. Chem. Soc. 1998, 120, 2780–2789.
  • Wang, P.; Bransk, A.S.; Banavali, N.K.; Nicklaus, M.C.; Marquez, V.E.; Christman, J.K.; MacKerell, A.D.J. Use of oligodeoxyribonucleotides with conformationally constrained abasic sugar targets to probe the mechanism of base flipping by HhaI DNA (Cytosine C5)-methyltransferase. J. Am. Chem. Soc. 2000, 122, 12422–12434.
  • Jacobson, K.A.; Ji, X.; Li, A.H.; Melman, N.; Siddiqui, M.A.; Shin, K.J., Marquez, V.E.; Ravi, R.G. Methanocarba analogues of purine nucleosides as potent and selective adenosine receptor agonists. J. Med. Chem. 2000, 43, 2196–2203.
  • Lee, K.; Ravi, R.; Ji, X.D.; Marquez, V.E. Ring-Constrained (N)-methanocarba nucleosides as adenosine receptor agonists: independent 5′-uronamide and 2’-deoxy modifications. Bioorg. Med. Chem. Lett. 2001, 11, 1333–1337.
  • Ravi, G.; Lee, K.; Ji, X.D.; Kim, H.S.; Soltysiak, K.A.; Marquez, V.E.; Jacobson, K.A. Synthesis and purine receptor affinity of 6-oxopurine nucleosides and nucleotides containing (N)-methanocarba-pseudoribose rings. Bioorg. Med. Chem. Lett. 2001, 11, 2295–2300.
  • Eoff, R.L.M.; McGrath, C.E.; Maddukuri, L.; Salamanca-Pinzon, S.G.; Marquez, V.E.; Marnett, L.J.; Guengerich, F.P.; Egli, M. Selective modulation of DNA Polymerase activity by fixed-conformation nucleoside analogues. Angew. Chem. Int. 2010, 49, 7481–7485.
  • Damaraju, V.L.; Mowles, D.; Smith, K.M.; Yao, S.Y.; Young, J.D.; Marquez, V.E.; Cass, C.E. Influence of sugar ring conformation on the transportability of nucleosides by human nucleoside transporters. ChemBioChem. 2011, 12, 2774–2778.
  • Chen, Y.L.; Lin, D.W.; Chang, Z.F. Identification of a putative human mitochondrial thymidine monophosphate kinase associated with monocytic/macrophage terminal differentiation. Genes Cells 2008, 13, 679–89.
  • Deville-Bonne, D.; El Amri, C.; Meyer, P.; Chen, Y.; Agrofoglio, L.A.; Janin, J. Human and viral nucleoside/nucleotide kinases involved in antiviral drug activation: structural and catalytic properties. Ant. Res. 2010, 86, 101–120.
  • Bosnar, M.H.; Bago, R.; Cétkovic, H. Subcellular localization of Nm23/NDPK A and B isoforms: a reflection of their biological function? Mol. Cell Biochem. 2009, 329, 63–71.
  • Ezzitouni, A.; Marquez, V.E. Conformationally locked carbocyclic nucleosides built on a Bicyclo[3.1.0]hexane template with a fixed southern conformation. Synthesis and Antiviral Activity. J. Chem. Soc., Perkin Trans. 1 1997, 1073–1078.
  • Carnrot, C.; Wang, L.; Topalis, D.; Eriksson, S. Mechanisms of substrate selectivity for Bacillus anthracis thymidylate kinase. Protein Sci. 2008, 17, 1486–1493.
  • Wang, L.; Hellman, U.; Eriksson, S. Cloning and expression of human mitochondrial deoxyguanosine kinase cDNA. FEBS Lett. 1996, 390, 39–43.
  • Sharif, H.; Jagarlamudi, K.K.; Wang, L.; He, E.; Eriksson, S. Quaternary structures of recombinant, cellular, and serum forms of Thymidine Kinase 1 from dogs and humans. BMC Biochem. 2012, pp. 13–12.
  • Usova, E.; Maltseva, T.; Földesi, A.; Chattopadhayaya, J.; Eriksson, S. Human Deoxycytidine Kinase as a Deoxyribonucleoside Phosphorylase J. Mol. Biol. 2004, 344, 1347–1358.
  • Van Rompay, A.R.; Norda, A.; Linden, K.; Johansson, M.: Karlsson, A. Phosphorylation of uridine and cytidine nucleoside analogs by two human uridine-cytidine kinases. Mol. Pharmacol. 2001, 59, 1181–1186.
  • Wang, L.; Eriksson, S. Cloning and characterization of full-length mouse thymidine kinase 2: the N-terminal sequence directs import of the precursor protein into mitochondria. Biochem. J. 2000, 351, 469–476.
  • Sjöberg, A.H.; Wang, L.; Eriksson, S. Substrate specificity of human recombinant mitochondrial deoxyguanosine kinase with cytostatic and antiviral purine and pyrimidine analogs. Mol. Pharmacol. 1998, 53, 270–273.
  • Eriksson, S.; Munch-Petersen, B.; Johansson, K.: Eklund, H. Structure and function of cellular deoxyribonucleoside kinases. Cell Mol. Life Sci. 2002, 59, 1327–1346.
  • Marquez, V.E.; Choi, Y.; Comin, M.J.; Russ, P.; George, C.; Huleihel, M.; Ben-Kasus, T.; Agbaria, R. Understanding how the herpes thymidine kinase orchestrates optimal sugar and nucleobase conformations to accommodate its substrate at the active site: a chemical approach. J. Am. Chem. Soc. 2005, 127, 15145–15150.
  • Marquez, V.E.; Hughes S.H.; Sei, S.; Agbaria, R. The history of N-methanocarbathymidine: The investigation of a conformational concept leads to the discovery of a potent and selective nucleoside antiviral agent. Ant. Res. 2006, 71, 268–275.
  • Sabini, E.; Hazra, S.; Konrad, M.; Lavie, A. Nonenantioselectivity property of human deoxycytidine kinase explained by structures of the enzyme in complex with L- and D-nucleosides. J. Med. Chem. 2007, 50, 3004–3014.
  • Maltseva, T.; Usova, E.; Eriksson, S.; Milecki, J.; Földesi, A.; Chattopadhayaya, J. The NMR conformation study of the complexes of deoxycytidine kinase (dCK) and 2′-deoxycytidine/2′-deoxyadenosine. Nucleosides Nucleotides Nucleic Acids. 2001, 20, 1225–1228.
  • Schelling, P.; Claus, M.T.; Johner, R.; Marquez, V.E.; Schulz, G.E.; Scapozza, L. Biochemical and structural characterization of (South)-Methanocarbathymidine that specifically inhibits growth of herpes simplex virus type 1 Thymidine Kinase-transduced osteosarcoma cells. J. Biol. Chem. 2004, 279, 32832–32838.
  • Eriksson, S.; Kierdaszuk, B.; Munch-Petersen, B.; Oberg, B.; Johansson, N.G. Comparison of the substrate specificities of human thymidine kinase 1 and 2 and deoxycytidine kinase toward antiviral and cytostatic nucleoside analogs. Biochem. Biophys. Res. Commun. 1991, 76, 586–592.
  • Prota, A.; Vogt, J.; Pilger, B.; Perozzo, R.; Wurth, C.; Marquez, V.E.; Russ, P.; Schulz, G.E.; Folkers, G.; Scapozza, L. Kinetics and crystal structure of the wild-type and the engineered Y101F mutant of Herpes simplex Virus Type 1 Thymidine Kinase interacting with (North)-methanocarba-thymidine. Biochemistry 2000, 39, 9597–9603.
  • Saenger, W. Structures and conformational properties of bases, furanose sugars, and phosphate groups. Principles of Nucleic Acid Structure, Springer-Verlag, New York, 1984, pp. 55–104.
  • Hazra, S.; Sabini, E.; Ort, S.; Konrad, M.; Lavie, A. Extending thymidine kinase activity to the catalytic repertoire of human deoxycytidine kinase. Biochemistry 2009, 48, 1256–1263.
  • Sabini, E.; Hazra, S.; Konrad, M.; Lavie, A. Elucidation of different binding modes of purine nucleosides to human deoxycytidine kinase. J. Med. Chem. 2008, 51, 4219–4225.
  • Johansson, K.; Ramaswamy, S.; Ljungcrantz, C.; Knecht, W.; Piskur, J.; Munch-Petersen, B.; Eriksson, S.; Eklund, H. Structural basis for substrate specificities of cellular deoxyribonucleoside kinases. Nat. Struct. Biol. 2001, 8, 616–620.
  • Wang, J.; Choudhury, D.; Chattopadhyaya, J.; Eriksson, S. Stereoisomeric selectivity of human deoxyribonucleoside kinases. Biochemistry 1999, 38, 16993–16999.
  • Van Roey, P.; Taylor, E.W.; Chu, C.K.; Schinazi, R.F. Correlation of molecular conformation and activity of reverse transcriptase inhibitors. Ann. N. Y. Acad. Sci. 1990, 616, 29–40.
  • Altman, K.H.; Kesselring, R.; Francotte, E.; Rihs, G. 4′, 6′-Methano carbocyclic thymidine: A conformationally constrained building block for oligonucleotides. Tetrahedron Lett. 1994, 35, 2331–2334.
  • Altman, K.H.; Imwinkelried, R.; Kesselring, R.; Rihs, G. 1′, 6′-methano carbocyclic thymidine: Synthesis, x-ray crystal structure, and effect on nucleic acid duplex stability. Tetrahedron. Lett. 1994, 35, 7625–7628.
  • Marquez, V.E.; Ezzitouni, A.; Siddiqui, M.A.; Russ, P.; Ikeda, H.; George, C. Conformational analysis of nucleosides constructed on a bicyclo[3.1.0]hexane template. Structure-Antiviral activity analysis for the northern and southern hemispheres of the pseudorotational cycle. Nucleosides Nucleotides Nucleic Acids 1997, 16, 1431–1434.
  • Hazra, S.; Szewczak, A.; Ort, S.; Konrad, M.; Lavie, A. Post-translational phosphorylation of serine 74 of human deoxycytidine kinase favors the enzyme adopting the open conformation making it competent for nucleoside binding and release. Biochemistry 2011, 50, 2870–2880.
  • Sun, R.; Eriksson, S.; Wang, L. Identification and characterization of mitochondrial factors modulating thymidine kinase 2 activity. Nucleosides Nucleotides Nucleic Acids 2010, 29, 382–385.
  • Bertrand, T.; Briozzo, P.; Assairi, L.; Ofiteru, A.; Bucurenci, N.; Munier-Lehmann, H.; Golinelli-Pimpaneau, B.; Bârzu, O.; Gilles, A.M. Sugar specificity of bacterial CMP kinases as revealed by crystal structures and mutagenesis of Escherichia coli enzyme. J. Mol. Biol. 2002, 315, 1099–1110.
  • Liou, J.Y.; Dutschman, G.E.; Lam, W.; Jiang, Z.; Cheng, Y.C. Characterization of human UMP/CMP kinase and its phosphorylation of D- and L-form deoxycytidine analogue monophosphates. Cancer Res 2002, 62, 1624–1631.
  • Marquez, V.E. Chemical and biological consequences of locking the conformation of nucleosides at the two antipodal extremes of the pseudorotational cycle. Nucleic Acids Symp Ser (Oxf), 2004, 48, 11–12.
  • Van Rompay, A.R.; Johansson, M.; Karlsson, A. Phosphorylation of deoxycytidine analog monophosphates by UMP-CMP kinase: molecular characterization of the human enzyme. Mol. Pharmacol. 1999, 56, 562–569.
  • Garces, E.; Cleland, W.W. Kinetic studies of yeast nucleoside diphosphate kinase. Biochemistry 1969, 8, 633–40.
  • Janin, J.; Deville-Bonne, D. Nucleoside-diphosphate kinase: structural and kinetic analysis of reaction pathway and phosphohistidine intermediate. Methods Enzymol. 2002, 354, 118–134.
  • Puttick, J.; Baker, E.N.; Delbaere, L.T. Histidine phosphorylation in biological systems. Biochim. Biophys. Acta. 2008, 1784, 100–105.
  • Siddiqui, M.A.; Ford, H. Jr.; George, C.; Marquez, V.E. Synthesis, Conformational analysis, and biological activity of a rigid carbocyclic analogue of 2′-Deoxyaristeromycin built on a Bicyclo[3.1.0]hexane template. Nucleosides Nucleotides Nucleic Acids 1996, 15, 235–250.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.