2,136
Views
64
CrossRef citations to date
0
Altmetric
Miscellany

Mitochondrial purine and pyrimidine metabolism and beyond

Pages 578-594 | Received 29 Sep 2015, Accepted 17 Nov 2015, Published online: 01 Dec 2016

References

  • Moraes, C.; Shanske, S.; Tritschler, H.; Aprille, J.; Andreetta, F.; Bonilla, E.; Schon, E.; DiMauro, S. MtDNA depletion with variable tissue expression: a novel genetic abnormality in mitochondrial diseases. Am. J. Hum. Genet. 1991, 48, 492–501.
  • Hofer, A.; Crona, M.; Logan, D.; Sjöberg, B. DNA buidling blocks: keeping control of manufacture. Crit. Rev. Biochem. Mol. Biol. 2012, 47, 50–63.
  • Håkansson, P.; Hofer, A.; Thelander, L. Regulation of mammalian ribonucleotide reduction and dNTP pools after DNA damage and in resting cells. J. Biol. Chem. 2006, 281, 7834–7841.
  • Ke, P.Y.; Chang, Z.F. Mitotic degradation of human thymidine kinase 1 is dependent on the anaphase-promoting complex/cyclosome-Cdh1-mediated pathway. Mol. Cell Biol. 2004, 24, 514–526.
  • Hu, C.-M.; Yeh, M.; Tsao, N.; Chen, C.; Gao, Q.; Chang, C.; Lee, M.; Feng, J.; Sheu, S.; Lin, C.; Tseng, M.; Chen, Y.; Chang, Z.F. Tumor cells require thymidylate kinase to prevent dUTP incorpaoration during DNA repair. Cancer Cell. 2012, 22, 36–50.
  • Pontarin, G.; Fijolek, A.; Pizzo, P.; Ferraro, P.; Rampazzo, C.; Pozzan, T.; Thelander, L.; Reichard, P.; Bianchi, V. Ribonucleotide reduction is a cytosolic process in mammalian cells independently of DNA dammage. Proc. Natl. Acad. Sci. USA 2008, 105, 17801–17806.
  • Wang, L. Deoxynucleoside salvage enzymes and tissue specific mitochondrial DNA depletion. Nucleosides Nucleotides Nucleic Acids 2010, 29, 370–381.
  • Franzolin, E.; Salata, C.; Bianchi, V.; Rampazzo, C. The dNTP triphosphohydrolase activity of SAMHD1 contributes to the mitochondrial DNA depletion associated with genetic deficiency of deoxyguanosine kinase. J. Biol. Chem. 2015, 290, 25986–25996.
  • Saada, A.; Shaag, A.; Mandel, H.; Nevo, Y.; Eriksson, S.; Elpeleg, O. Mutant mitochondrial thymidine kinase in mitochondrial DNA depletion myopathy. Nat. Genet. 2001, 29, 342–344.
  • Mandel, H.; Szargel, R.; Labay, V.; Elpeleg, O.; Saada, A.; Shalata, A.; Anbinder, Y.; Berkowitz, D.; Hartman, C.; Barak, M.; Eriksson, S.; Cohen, N. The deoxyguanosine kinase gene is mutated in individuals with depleted hepatocerebral mitochondrial DNA. Nat. Genet. 2001, 29, 337–341.
  • Austin, W.; Armijo, A.; Campbell, D.; Singh, A.; Hsieh, T.; Nathanson, D.; Herschman, H.; Phelps, M.; Witte, O.; Czernin, J.; Radu, C. Nucleoside salvage pathway kinases regulate hematopoiesis by linking nucleotide metabolism with replication stress. J. Exp. Med. 2012, 209, 2215–2228.
  • Lynx, M.D.; Bentley, A.T.; McKee, E.E. 3′-Azido-3′-deoxythymidine (AZT) inhibits thymidine phosphorylation in isolated rat liver mitochondria: a possible mechanism of AZT hepatotoxicity. Biochem. Pharmacol. 2006, 71, 1342–1348.
  • Morris, G.W.; Iams, T.A.; Slepchenko, K.G.; McKee, E.E. Origin of pyrimidine deoxynucleotide pools in perfused rat heart implications for 3′-azido-3′-deoxythymidine-dependent cardiotoxicity. Biochem. J. 2009, 422, 513–520.
  • Eriksson, S.; Munch-Petersen, B.; Johansson, K.; Eklund, H. Structure and function of cellular deoxynucleoside kinases. Cell. Mol. Life Sci. 2002, 59, 1327–1346.
  • Sun, R.; Wang, L. Thymidine kinase 2 enzyme kinetics elucidate the mechanism of thymidine-induced mitochondrial DNA depletion. Biochemistry 2014, 53, 6142–6150.
  • Yan, H.; Tsai, M. Nucleoside monophosphate kinases: structure, mechanism, and substrate specificity. Adv. Enzymol. Relat. Areas Mol. Biol. 1999, 73, 103–134.
  • Pontarin, G.; Gallinaro, L.; Ferraro, P.; Reichard, P.; Bianchi, V. Origins of mitochondrial thymidine triphosphate: dynamic relations to cytosolic pools. Proc. Natl. Acad. Sci. USA 2003, 100, 12159–12164.
  • Di Noia, M.; Todisco, S.; Cirigliano, A.; Rinaldi, T.; Agrimi, G.; LIacobazzi, V.; Palmieri, F. The human SLC25A33 and SLC25A36 genes of solute carrier family 25 encode two mitochondrial pyrimidine nucleotide transporters. J. Biol. Chem. 2014, 289, 33137–33148.
  • Palmieri, F. Mitochondrial transporters of the SLC25 family and associated diseases: a review. J. Inherit. Metab. Dis. 2014, 37, 565–575.
  • Lee, M.-H.; Wang, L.; Chang, Z.-F. The contribution of mitochondrial thymidylate synthesis in preventing the nuclear genome stress. Nucleic Acids Res. 2014, 42, 4972–4984.
  • Jüllig, M.; Eriksson, S. Mitochondrial and submitochondrial localization of human deoxyguanosine kinase. Eur. J. Biochem. 2000, 267, 5466–5472.
  • Hatzis, P.; Al-Madhoon, A.; Jüllig, M.; Petrakis, T.; Eriksson, S.; Talianidis, I. The intracellular localization of deoxycytidine kinase. J. Biol. Chem. 1998, 273, 30239–30243.
  • Samsonoff, W.; Reston, J.; McKee, M.; O'Connor, B.; Galivan, J.; Maley, G.; Maley, F. Intracellular location of thymidylate synthease and its state of phosphorylation. J. Biol. Chem. 1997, 272, 13281–13288.
  • Young, P.; Leeds, J.; Slabaugh, M.; Mathews, C.K. Ribonucleotide reductase: evidence for specific association with Hela cell mitochondria. Biochem. Biophys. Res. Commun. 1994, 203, 46–52.
  • Chimploy, K.; Song, S.; Wheeler, L.; Mathews, C.K. Ribonucleotide reductase association with mammalian liver mitochondria. J. Biol. Chem. 2013, 288, 13145–13155.
  • Anderson, D.; Quintero, C.; Stover, P. Identification of a de novo thymidylate biosynthesis pathway in mammalian mitochondria. Proc. Natl. Acad. Sci. USA 2011, 108, 15163–15168.
  • Kamath, V.; Hsiung, C.; Lizenby, Z.; McKee, E.E. Heart mitochondrial TTP synthesis and the compartmentalization of TMP. J. Biol. Chem. 2015, 290, 2034–2041.
  • Krishnan, S.; Paredes, J.; Zhou, X.; Kuiper, R.; Hulteby, K.; Curbo, S.; Karlsson, A. Long term expression of Drosophila melaoguster nucleoside kinase in thymidine kinase 2 deficient mice with no lethal effects caused by nucleotide pool imbalances. J. Biol. Chem. 2014, 289, 32835–32844.
  • Dalle-Donne, I.; Rossi, R.; Giustarini, D.; Colombo, R.; Milzani, A. S-glutathionylation in protein redox regulation. Free Rad. Biol. Med. 2007, 43, 883–898.
  • Lewis, W.; Copeland, W.C.; Day, B.J. Mitochondrial DNA depletion, oxidative stress, and mutation: mechanisms of dysfunction from nucleoside reverse transcriptase inhibitors. Lab. Invest. 2001, 81, 777–790.
  • Sun, R.; Eriksson, S.; Wang, L. Oxidative stress induced s-glutathionylation and proteolytic degradation of mitochondrial thymidine kinase 2. J. Biol. Chem. 2012, 287, 24304–24312.
  • Sun, R.; Eriksson, S.; Wang, L. Zidovudine induces downregulation of mitochondrial deoxynucleoside kinases: implications for mitochondrial toxicity of antiviral nucleoside analogs. Antimicrob. Agents Chemother. 2014, 58, 6758–6766.
  • Sun, R.; Eriksson, S.; Wang, L. Down-regulation of mitochondrial thymidine kinase 2 and deoxyguanosine kinase by didanosine: implications for mitochondrial toxicities of anti-HIV nucleoside analogs. Biochem. Biophys. Res. Commun. 2014, 450, 1021–1026.
  • Graziewicz, M.; Day, B.; Copeland, W.C. The mitochondrial DNA polymerase as a target of oxidative damage. Nucleic Acids Res. 2002, 30, 2817–2824.
  • Koc, A.; Mathews, C.K.; Wheeler, L.; Gross, M.K.; Merrill, G.F. Thioredoxin is required for deoxynucleotide pool maintenance during S phase. J. Biol. Chem. 2006, 281, 15058–15063.
  • Zehedi Avval, F.; Holmgren, A. Molecular mechanisms of thioredoxin and glutaredoxin as hydrogen donors for mammalian S phase ribonucleotide reductase. J. Biol. Chem. 2009, 284, 8233–8240.
  • Wang, L.; Sun, R.; Eriksson, S. The kinetic effects on thymidine kinase 2 by enzyme bound dTTP may explain the mitochondrial side effects of antiviral nucleoside analogs. Antimicrob. Agents Chemother. 2011, 55, 2552–2558.
  • Bogenhagen, D.; Clayton, D.A. Thymidylate nucleotide supply for mitochondrial DNA synthesis in mouse L-cells. Effect of 5-fluorodeoxyuridine and methotrexate in thymidine kinase plus and thymidine kinase minus cells. J. Biol. Chem. 1976, 251, 2938–2944.
  • Clémencon, B.; Babot, M.; Trézéquet, V. The mitochondrial ADP/ATP carrier (SLC25 family): pathological implications of its dysfunction. Mol. Aspects Med. 2013, 34, 485–493.
  • Chabes, A.; Pfleger, C.; Kirschner, M.; Thelander, L. Mouse ribonucleotide reductase R2 protein: a new target for anaphase-promoting complex-Cdh1-mediated proteolysis. Proc. Natl. Acad. Sci. USA 2003, 100, 3925–3929.
  • Melo, S.; Yoshida, A.; Berger, F. Function dissection of the N-terminal degron of human thymidylate synthase. Biochem. J. 2010, 432, 217–226.
  • Davidson, M.; Katou, Y.; Keszthelyi, A.; Sing, T.; Xia, T.; Qu, J.; Vaisica, J.; Thevakumaran, N.; Marjavaara, L.; Myers, C.; Chabes, A.; Shirahige, K.; Brown, G. Endogenous DNA replication stress results in expansion of dNTP pools and a mutator phenotype. EMBO J. 2012, 31, 895–907.
  • Buckland, R.; Watt, D.; Chittoor, B.; Nilsson, A.; Kunkel, T.; Chabes, A. Increased and imbalanced dNTP pools symmetrically promote both leading and lagging strand replication infidelity. PLoS Genet. 2014, 10, e1004846.
  • Poli, J.; Tsaponina, O.; Crabbé, L.; Keszthelyi, A.; Pantesco, V.; Chabes, A.; Lengronne, A.; Pasero, P. DNTP pools determine fork progression and origin usage under replication stress. EMBO J. 2012, 31, 883–894.
  • Koc, A.; Wheeler, L.; Mathews, C.; Merrill, G. Hydroxyurea arrests DNA replication by a mechanism that preserves basal dNTP pools. J. Biol. Chem. 2004, 279, 223–230.
  • Gemble, S.; Ahuja, A.; Buhagiar-Labarchede, G.; Onclercq-Delic, R.; Dairou, J.; Biard, D.; Lambert, S.; Lopes, M.; Amor-Gueret, M. Pyrimidine pool disequilibrium induced by a cytidine deaminase deficiency inhibits PARP-1 activity leading to the under replication of DNA. PLoS Genet. 2015, 11, e1005384.
  • Gupta, A.; Sharma, S.; Reichenbach, P.; Marjavaara, L.; Nilsson, A.; Lingner, J.; Chabes, A.; Rothstein, R.; Chang, M. Telomere length homostasis responds to changes in intracellular dNTP pools. Genetics 2013, 193, 1095–1105.
  • Lopez, L.; Akman, H.; Garcia-Cazola, A.; Dorado, B.; Marti, R.; Nishino, I.; Tadesse, S.; Pizzorno, G.; Shungu, D.; Bonilla, E.; Tanji, K.; Hirano, M. Unbalanced deoxynucleotide pools cause mitochondrial DNA instability in thymidine phosphorylase-deficient mice. Hum. Mol. Genet. 2009, 18, 714–722.
  • Wang, L.; Eriksson, S. Tissue specific distribution of pyrimidine deoxynucleoside salvage enzymes shed light on the mechanism of mitochondrial DNA depletion.. Nucleosides Nucleotides Nucleic Acids 2010, 29, 400–403.
  • Hosseini, S.H.; Kohler, J.J.; Haase, C.P.; Tioleco, N.; Stuart, T.; Keebaugh, E.; Ludaway, T.; Russ, R.; Green, E.; Long, R.; Wang, L.; Eriksson, S.; Lewis, W. Targeted transgenic overexpression of mitochondrial thymidine kinase (tk2) alters mitochondrial DNA (mtDNA) and mitochondrial polypeptide abundance: transgenic tk2, mtDNA, and antiretrovirals. Am. J. Pathol. 2007, 170, 865–874.
  • Nishino, I.; Spinazzola, A.; Hirano, M. Thymidine phosphorylase gene mutations in MNGIE, a human mitochondrial disorder. Science 1999, 283, 689–692.
  • Spinazzola, A.; Marti, R.; Nishino, I.; Andreu, A.; Naini, A.; Tadesse, S.; Pela, I.; Zammarchi, E.; Donati, M.; Oliver, J.; Hirano, M. Altered thymidine metabolism due to defects of thymidine phosphorylase. J. Biol. Chem. 2002, 277, 4128–4133.
  • Marti, R.; Nishigaki, Y.; Hirano, M. Elevated plasma deoxyurindine in patients with thymidine phosphorylase deficiency. Biochem. Biophys. Res. Commun. 2003, 303, 14–18.
  • Wang, L.; Eriksson, S. Cloning and characterization of full length mouse thymidine kinase 2: the N-terminal sequence directs import of the precursor protein into mitochondria. Biochem. J. 2000, 351, 469–476.
  • Gonzalez-Vioque, E.; Torres-Torronteras, J.; Andreu, A.; Marti, R. Limited dCTP availability accounts for mitochondrial DNA depletion in mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). PLoS Genet. 2011, 7, e1002035.
  • Garone, C.; Garcia-Diaz, B.; Emmanuele, V.; Lopez, L.; Tadesse, S.; Akman, H.; Tanji, K.; Quinzii, C.; Hirano, M. Deoxypyrimidine monophosphate bypass therapy for thymidine kinase 2 deficiency. EMBO Mol. Med. 2014, 6, 1016–1027.
  • Camara, Y.; Gonzalez-Vioque, E.; Scarpelli, M.; Torres-Torronteras, J.; Caballero, A.; Hirano, M.; Martı, R. Administration of deoxyribonucleosides or inhibition of their catabolism as a pharmacological approach for mitochondrial DNA depletion syndrome. Hum. Mol. Genet. 2014, 23, 2459–2467.
  • Bourdon, A.; Minai, L.; Serre, V.; Jais, J.-P.; Sarzi, E.; Aubert, S.; Chretien, D.; de Lonlay, P.; Paquis-Flucklinger, V.; Arakawa, H.; Nakamura, Y.; Munnich, A.; Rötig, A. Mutation of RRM2b, encoding p53-controlled ribonucleotide reductase (p53R2), causes severe mitochondrial DNA depletion. Nat. Genet. 2007, 39, 776–780.
  • Ylikallio, E.; Page, J.L.; Xu, X.; Lampinen, M.; Bepler, G.; Ide, T.; Tyynismaa, H.; Weiss, R.S.; Suomalainen, A. Ribonucleotide reductase is not limiting for mitochondrial DNA copy number in mice. Nucleic Acids Res. 2010, 38, 8208–8218.
  • Naviaux, R.; Nguyen, K. POLG mutations associated with Alpers' syndrome and mitochondrial DNA depletion. Ann. Neurol. 2004, 55, 706–712.
  • Sarzi, E.; Goffart, S.; Serre, V.; Chretien, D.; Slama, A.; Munnich, A.; Spelbrink, J.N.; Rötig, A. Twinkle helicase (PEO1) gene mutation causes mitochondrial DNA depletion. Ann. Neurol. 2007, 62, 579–587.
  • Kornblum, C.; Nicholls, T.; Haack, T.; Schöler, S.; Peeva, V.; Danhauser, K.; Hallmann, K.; Zsurka, G.; Rorbach, J.; Luso, A.; Wieland, T.; Sciacco, M.; Ronchi, D.; Comi, G.; Moggio, M.; Quinzii, C.; DiMauro, S.; Calvo, S.; Mootha, V.; Klopstock, T.; Strom, T.; Meitinger, T.; Minczuk, M.; Kunz, W.; Prokisch, H. Loss-of function mutations in MGME1 impair mtDNA replication and cause multisystemic mitochondrial disease. Nat. Genet. 2013, 45, 214–211.
  • Palmieri, L.; Alberio, S.; Pisano, I.; Lodi, T.; Meznaric-Petrusa, M.; Zidar, J.; Santoro, A.; Scarcia, P.; Fontanesi, F.; Lamantea, E.; Ferrero, I.; Zeviani, M. Complete loss-of-function of the heart/muscle-specific adenine nucleotide translocator is associated with mitochondrial myopathy and cardiomyopathy. Hum. Mol. Genet. 2005, 14, 3079–3088.
  • Elpeleg, O.; Miller, C.; Hershkovitz, E.; Bitner-Glindzicz, M.; Bondi-Rubinstein, G.; Rahman, S.; Pagnamenta, A.; Eshhar, S.; Saada, A. Deficiency of the ADP-forming succinyl-CoA synthase activity is associated with encephalomyopathy and mitochondrial DNA depletion. Am. J. Hum. Genet. 2005, 76, 1081–1086.
  • Ostergaard, E.; Christensen, E.; Kristensen, E.; Mogensen, B.; Duno, M.; Shoubridge, E.; Wibrand, F. Deficiency of the alfa subunit of succinate-coenzyme A ligase causes fatal infantile lactic acidosis with mitochondrial DNA depletion. Am. J. Hum. Genet. 2007, 81, 383–387.
  • Spinazzola, A.; Viscomi, C.; Fernandez-Vizarra, E.; Carrara, F.; D'Adamo, P.; Calvo, S.; Marsano, R.; Donnini, C.; Weiher, H.; Strisciuglio, P.; Parini, R.; Sarzi, E.; Chan, A.; DiMauro, S.; Rötig, A.; Gaspari, P.; Ferraro, I.; Mootha, V.; Tiranti, V.; Zeviani, M. MPV17 encodes an inner mitochondrial membrane protein and is mutated in infantile hepatic mitochondrial DNA depletion. Nat. Genet. 2006, 38, 570–575.
  • Antonenkov, V.; Isomursu, A.; Mennerich, D.; Vapola, M.; Weiher, H.; Kietzmann, T.; Hiltunen, J. The human mitochondrial DNA depletion syndrome gene MPV17 encodes a non-selective channel that modulates membrance potential. J. Biol. Chem. 2015, 290, 13840–13861.
  • Besse, A.; Wu, P.; Bruni, F.; Donti, T.; Graham, B.; Craigen, W.; McFarland, R.; Moretti, P.; Lalani, S.; Scott, K.; Taylor, R.; Bonnen, P. The GABA transaminase, ABAT, is essential for mitochondrial nucleoside metabolism. Cell Metab. 2015, 21, 417–427.
  • Bonnen, P.; Yarham, J.; Besse, A.; Wu, P.; Faqeih, E.; Al-Asmari, A.; Saleh, M.; Eyaid, W.; Hadeel, A.; He, L.; Smith, F.; Yau, S.; Simcox, E.; Miwa, S.; Donti, T.; Abu-Amero, K.; Wong, L.; Craigen, W.; Graham, B.; Scott, K.; McFarland, R.; Taylor, R. Mutations in FBXL4 cause mitochondrial encephalopathy and a disorder of mitochondrial DNA maintennnance. Am. J. Hum. Genet. 2013, 93, 471–481.
  • Gai, X.; Ghezzi, D.; Johnson, M.; Biagosch, C.; Shamseldin, H.; Haack, T.; Reyes, A.; Tsukikawa, M.; Sheldon, C.; Srinivasan, S.; Gorza, M.; Kremer, L.; Wieland, T.; Strom, T.; Polyak, E.; Place, E.; Consugar, M.; Ostrovsky, J.; Vidoni, S.; Robinson, A.; Wong, L.; Sondheimer, N.; Salih, M.; Al-Jishi, E.; Raab, C.; Bean, C.; Furlan, F.; Parini, R.; Lamperti, C.; Mayr, J.; Konstantopoulou, V.; Huemer, M.; Pierce, E.; Meitinger, T.; Freisinger, P.; Sperl, W.; Prokisch, H.; Alkuraya, F.; Falk, M.; Zeviani, M. Mutations in FBXL4, encoding a mitochondrial protein, cause early-onset mitochondrial encephalomyopathy. Am. J. Hum. Genet. 2013, 93, 482–495.
  • Desler, C.; Munch-Petersen, B.; Stevnsner, T.; Matsui, S.; Kulawiec, M.; Singh, K.; Rasmussen, L. Mitochondrial as determinant of nucleotide pools and chromosomal stability. Mut. Res. 2007, 625, 112–124.
  • Martın Sanchez, C.; Pérez Martın, J.; Jin, J.; Davalos, A.; Zhang, W.; de la Pena, G.; Martinez-Botas, J.; Rodriguez-Acebes, S.; Suarez, Y.; Hazen, M.; Gomez-Coranado, D.; Busto, R.; Cheng, Y.; Lasuncion, M. Disruption of the mevalonate pathway induces dNTP depletion and DNA damage. Biochem. Biophys. Acta 2015, 1851, 1240–1253.
  • Schooors, A.; Bruning, U.; Missiaen, R.; Queiroz, K.; Borgers, G.; Elia, I.; Zecchin, A.; Cantelmo, A.; Christen, S.; Goveia, J.; Heggermont, W.; Godde, L.; Vinckier, S.; Van Veldhoven, P.; Eelen, G.; Schoonjans, L.; Gerhardt, H.; Dewerchin, M.; Baes, M.; De Bok, K.; Ghesquiere, B.; Lunt, S.; Fendt, S.; Carmeliet, P. Fatty acid carbon is essential for dNTP synthesis in endothelial cells. Nature 2015, 520, 192–197.
  • Villarrova, J.; Dorado, B.; Vila, M.R.; Carcia-Arumi, E.; Domingo, P.; Giralt, M.; Hirano, M.; Villarroya, F. Thymidine kinase 2 deficiency-induced mitochondrial DNA depletion causes abnormal development of adipose tissues and adipokine levels in mice. PLoS One 2011, 6, e29691.
  • Zhou, X.; Kannisto, K.; Curbo, S.; von Döbeln, U.; Hultenby, K.; Isetun, S.; Gåfvels, M.; Karlsson, A. Thymidine kinase 2 deficiency-induced mtDNA depletion in mouse liver leads to defect beta-oxidation. PLOS One 2013, 8, e58843.
  • Villarroya, J.; de Bolœs, C.; Meseguer, A.; Hirano, M.; Vila, M.R. Altered gene transcription profiles in fibroblasts harboring either TK2 or DGUOK mutations indicate compensatory mechanisms. Exp. Cell. Res. 2009, 315, 1429–1438.
  • Villarroya, J.; Lara, M.-C.; Dorado, B.; Garrido, M.; Garcia-Arumi, E.; Meseguer, A.; Hirano, M.; Vila, M.R. Targeted impairment of thymidine kinase 2 expression in cells induces mitochondrial DNA depletion and reveals molecular mechanisms of compensation of mitochondrial respiratory activity. Biochem. Biophys. Res. Commun. 2011, 407, 333–338.
  • Paredes, J.; Zhou, X.; Höglund, S.; Karlsson, A. Gene expression deregulation in postnatal skeletal muscle of TK2 deficient mice reveals a lower pool of proliferating myogenic progenitor cells. PLoS One 2013, 8, e53698.
  • Kalko, S.; Paco, S.; Jou, C.; Rodriguez, M.; Meznaric, M.; Rogac, M.; Jekovec-Vrhovsek, M.; Sciacco, M.; Moggio, M.; Fagiolari, G.; De Paepe, B.; De Meirleir, L.; Ferrer, I.; Roid-Quilis, M.; Munell, F.; Montoya, J.; Lopez-Gallardo, E.; Ruiz-Pesini, E.; Artuch, R.; Montero, R.; Torner, F.; Nascimento, A.; Ortez, C.; Colomer, J.; Jimenez-Mallebrera, C. Transcriptomic profiling of TK2 deficient human skeletal muscle suggets a role for the p53 signalling pathway and identifies growth and differentiation factor-15 as a potential novel biomarker for mitochondrial myopathies. BMC Genomics 2014, 15, 91.
  • Saleem, A.; Safdar, A.; Kitaoka, Y.; Ma, X.; Marquez, O.; Ahkhtar, M.; Nazli, A.; Suri, R.; Turnbull, J.; Tarnopolsky, M. Polymerase gamma mutator mice rely on increased glycolytic flux for energy production. Mitochondrion 2015, 21, 19–26.
  • Boroughs, L.; DeBerardinis, R. Metabolic pathways promoting cancer cell survival and growth. Nat. Cell. Biol. 2015, 17, 351–359.
  • Zhang, H.; Singh, K. Global genetic determinants of mitochondrial DNA copy number. PLoS One 2014, 9, e105242.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.