434
Views
1
CrossRef citations to date
0
Altmetric
Articles

Utilization of 1,3-Dioxolanes in the Synthesis of α-branched Alkyl and Aryl 9-[2-(Phosphonomethoxy)Ethyl]Purines and Study of the Influence of α-branched Substitution for Potential Biological Activity

, , , &
Pages 119-156 | Received 01 Mar 2017, Accepted 26 Jul 2018, Published online: 07 Dec 2018

References

  • (a) Holý, A.; Phosphonomethoxyalkyl Analogs of Nucleotides. Curr. Pharm. Design 2003, 9. 2567–2692. (b) De Clercq, E.; Holý, A. Acyclic Nucleoside Phosphonates: A Key Class of Antiviral Drugs. Nat. Rev. Drug Discov. 2005, 4, 928–940.
  • Berenguer, J.; Mallolas, J. Intravenous Cidofovir for Compassionate Use in AIDS Patients with Cytomegalovirus Retinitis. Clin. Infect. Dis. 2000, 30, 182–184.
  • Andrei, G.; Topalis, D.; De Schutter, T.; Snoeck, R. Insights into the Mechanism of Action of Cidofovir and Other Acyclic Nucleoside Phosphonates against Polyoma- and Papillomaviruses and Non-Viral Induced Neoplasia. Antiviral. Res. 2015, 114, 21–46.
  • Zoulim, F.; Lebosse, F.; Levrero, M. Current Treatments for Chronic Hepatitis B Virus Infections. Curr. Curr. Opin. Virol. 2016, 18, 109–116.
  • Gunthard, H. F.; Saag, M. S.; Benson, C. A.; del Rio, C.; Eron, J. J.; Gallant, J. E.; Hoy, J. F.; Mugavero, M. J.; Sax, P. E.; Thompson, M. A. Antiretroviral Drugs for Treatment and Prevention of HIV Infection in Adults 2016. Recommendations of the International Antiviral Society-USA Panel. JAMA- J. Am. Med. Assoc. 2016, 316, 191–210.
  • Antela, A.; Aguiar, C.; Compston, J.; Hendry, B. M.; Boffito, M.; Mallon, P.; Pourcher-Martinez, V.; Di Perri, G. The Role of Tenofovir Alafenamide in Future HIV Treatment. HIV Med. 2016, 17, (Suppl. 4–16).
  • Rose, W. C.; Crosswell, A. R.; Bronson, J. J.; Martin, J. C. In Vivo Tumor Activity of 9-[(2-Phosphonylmethoxy)Ethyl]-Guanine (PMEG) and Related Phosphonate Nucleotide Analogs. J. Natl. Cancer Inst. 1990, 82, 510–512.
  • Hatse, S.; Naesens, L.; De Clercq, E.; Balzarini, J. N(6)-Cyclopropyl-PMEDAP: A Novel Derivative of 9-(2-Phosphonylmethoxyethyl)-2-6-Diaminopurine (PMEDAP) with Distinct Metabolic, Antiproliferative, and Differentiation-Inducing Properties. Biochem. Pharmacol. 1999, 58, 311–323.
  • (a) http://vet-dc.com/products/tanovea-for-lymphoma/; (b) De Clercq, E. Tanovea® for the Treatment of Lymphoma in Dogs. Biochem. Pharmacol. 2018, 154, 265–269.
  • De Jersey, J.; Holý, A.; Hocková, D.; Naesens, L.; Keough, D. T.; Guddat, L. W. 6-Oxopurine Phosphoribosyltransferase: A Target for the Development of Antimalarial Drugs. Curr. Top. Med. Chem. 2011, 11, 2085–2102.
  • Keough, D. T.; Hocková, D.; Holý, A.; Naesens, L. M. J.; Skinner-Adams, T. S.; de Jersey, J.; Guddat, L. W. Inhibition of Hypoxanthine-Guanine Phosphoribosyltransferase by Acyclic Nucleoside Phosphonates: A New Class of Antimalarial Therapeutics. J. Med. Chem. 2009, 52, 4391–4399.
  • Hocková, D.; Holý, A.; Masojídková, M.; Keough, D. T.; De Jersey, J.; Guddat, L. W. Synthesis of Branched 9-[2-(2-Phosphonoethoxy)Ethyl]Purines as a New Class of Acyclic Nucleoside Phosphonates Which Inhibit Plasmodium falciparum Hypoxanthine–Guanine–Xanthine Phosphoribosyltransferase. Bioorg. Med. Chem. 2009, 17, 6218–6232.
  • Keough, D. T.; Hocková, D.; Janeba, Z.; Wang, T. H.; Naesens, L.; Edstein, M. D.; Chavchich, M.; Guddat, L. W. Aza-Acyclic Nucleoside Phosphonates Containing a Second Phosphonate Group as Inhibitors of the Human, Plasmodium falciparum and Vivax 6-Oxopurine Phosphoribosyltransferases and Their Prodrugs as Antimalarial Agents. J. Med. Chem. 2015, 58, 827–846.
  • Krečmerová, M.; Dračínský, M.; Hocková, D.; Holý, A.; Keough, D. T.; Guddat, L. W. Synthesis of Purine N-9-[2-Hydroxy-3-O-(Phosphonomethoxy)Propyl] Derivatives and Their Side-Chain Modified Analogs as Potential Antimalarial Agents. Synthesis of Purine N-9-[2-Hydroxy-3-O-(Phosphonomethoxy)Propyl] Derivatives and Their Side-Chain Modified Analogs as Potential Antimalarial Agents. Bioorg. Med. Chem. 2012, 20, 1222–1230.
  • Rosenberg, I.; Králiková, Š. A Simple Synthetic Route to the Preparation of 2-(1- Phosphonoalkoxy)Ethyl Derivatives of Heterocyclic Bases as Novel Nucleotide Analogs Related to PMEA. Collect. Czech. Chem. Commun. 1996, 61, 81–S84.
  • Yu, K.-L.; Bronson, J. J.; Yang, H.; Patick, A.; Alam, M.; Brankovan, V.; Datema, R.; Hitchcock, M. J. M.; Martin, J. C. Synthesis and Antiviral Activity of Methyl Derivatives of 9-[2-(Phosphonomethoxy)Ethylguanine. J. Med. Chem. 1992, 35, 2958–2969.
  • Kim, D.-K.; Gam, J.; Kim, K. H. Synthesis of 9-[(2-Hydroxy-1-Phosphonylethoxy)Ethyl]Guanine, 1-[(2-Hydroxy-1-Phosphonylethoxy)Ethyl]Cytosine and 9-[(2-Hydroxy-1-Phosphonylethoxy)Ethyl] Adenine. J. Heterocycl. Chem. 1996, 33, 1865– 1870.
  • Li, Y.-F.; Hammerschmidt, F. Enzymes in Organic Chemistry, Part 1: Enantioselective Hydrolysis of Alpha-(Acyloxy)Phosphonates by Esterolytic Enzymes. Tetrahedron: Assymmetry 1993, 4, 109–120.
  • Hammerschmidt, F.; Kahlig, H.; Muller, N. Biosynthesis of Natural-Products with a P-C Bond. 6. Preparation of Deuterium-Labeled and Carbon-13-Labeled L-Alanyl-Phosphonic and L- Alanyl-L-Alanyl-(2-Aminoethyl)Phosphonic Acids and Their Use in Biosynthetic Studies of Fosfomycin in Streptomyces-Fradiae. J.Chem. Soc. Perkin Trans. 1991, 1, 365–369.
  • Collins, D. J.; Drygala, P. F.; Swan, J. M. Organo-Phosphorus Compounds. 18. Synthesis of 2-Phenyl-2,3-Dihydro-1H-1,2-Benzazaphosphole 2-Sulfide by Pyrolysis of (2-Aminobenzyl)Phenyldithiophosphinic Acid. Aust. J. Chem. 1983, 36, 2095–2110.
  • Collins, D. J.; Drygala, P. F.; Swan, J. M. Organo-Phosphorus Compounds. 20. Approaches to the Synthesis of 2,3-Dihydro-1H-1,2-Benzazaphospholes Involving C-C and C-P Ring Closure. Aust. J. Chem. 1984, 37, 1009–1021.
  • Eisai Co., Ltd. Patent: US2007/10542 A1, 2007.; pp. column 82.
  • Luo, Y. R. Comprehensive Handbook of Chemical Bond Energies; CRC Press; Taylor & Frances Group: Boca Raton, FL, 2007.
  • Manvar, A.; Shah, A. Diversity Oriented Efficient Access of Trisubstituted Purines via Sequential Regioselective Mitsunobu Coupling and SNAr Based C6 Functionalizations. Tetrahedron 2013, 69, 680–691.
  • Holý, A.; Günter, J.; Dvořáková, H.; Masojídková, M.; Andrei, G.; Snoeck, R.; Balzarini, J.; De Clercq, E. Structure-Antiviral Activity Relationship in the Series of Pyrimidine and Purine N-[2-(2-Phosphonomethoxy)Ethyl] Nucleotide Analogues. 1. Derivatives Substituted at the Carbon Atoms of the Base. J. Med. Chem. 1999, 42, 2064–2086.
  • Harrington, P. J. Pharmaceutical Process Chemistry for Synthesis: Rethinking the Routes to Scale-up. John Wiley & Sons, Inc.: Hoboken, New Jersey, 2011., p. 227.
  • Lemke, T. L.; Williams, D. A. In: Foye's Principles of Medicinal Chemistry; Lemke, T. L., Williams, D. A., Eds.); Wolters Kluwer Health: Baltimore, 2013., p. 711.
  • Sedláček, O.; Břehová, P.; Pohl, R.; Holý, A.; Janeba, Z. The Synthesis of the 8-C- Substituted 2,6-Diamino-9-[2-(Phosphonomethoxy)Ethyl]Purine (PMEDAP) Derivatives by Diverse Cross-Coupling Reactions. Can. J. Chem. 2011, 89, 488–498.
  • Pomeisl, K.; Pohl, R.; Holý, A.; Votruba, I. Simple Transformation of Thymine 1-[3- Hydroxy-2-(Phosphonomethoxy)Propyl] Derivatives to Their 1-[3-Fluoro-2-(Phosphonomethoxy)Propyl] Counterparts. Collect. Czech. Chem. Commun. 2005, 70, 1465–1481.
  • Pomeisl, K.; Pohl, R.; Holý, A.; Votruba, I. Synthesis of Base and Side-Chain Modified Pyrimidine 1-[2-(Phosphonomethoxy)Propyl] Derivatives as Potent Inhibitors of Thymidine Phosphorylase (PD-ECGF) from SD-Lymphoma. Collect. Czech. Chem. Commun. 2006, 71, 595–624.
  • Pomeisl, K.; Holý, A.; Votruba, I.; Pohl, R. Syntheses of N3-Substituted Thymine Acyclic Nucleoside Phosphonates and a Comparison of Their Inhibitory Effect towards Thymidine Phosphorylase. Bioorg. Med. Chem. Lett. 2008, 18, 1364–1367.
  • Burns, C. L.; St. Clair, M. H.; Frick, L. W.; Spector, T.; Averett, D. R.; English, M. L.; Holmes, T. J.; Krenitsky, T. A.; Koszalka, G. W. Novel 6-Alkoxypurine 2‘,3‘-Dideoxynucleosides as Inhibitors of the Cytopathic Effect of the Human Immunodeficiency Virus. J. Med. Chem. 1993, 36, 378–384.
  • Pertusat, F.; Serpi, M.; McGuigan, C. Medicinal Chemistry of Nucleoside Phosphonate Prodrugs for Antiviral Therapy. Antivir. Chem. Chemother. 2012, 22, 181–203.
  • Holý, A.; Votruba, I.; Tloušťová, E.; Masojídková, M. Synthesis and Cytostatic Activity of N-[2-(Phosphonomethoxy)Alkyl] Derivatives of N6-Substituted Adenines, 2,6-Diaminopurines and Related Compounds. Collect. Czech. Chem. Commun. 2001, 66, 1545–1592.
  • Compton, M. L.; Toole, J. J.; Paborsky, L. R . 9-(2-Phosphonylmethoxyethyl)-N6-cyclopropyl-2,6-diaminopurine (cpr-PMEDAP) as a prodrug of 9-(2-phosphonylmethoxyethyl)guanine (PMEG) ). Biochem. Pharmacol. 1999, 58, 709–714.
  • Schinkmanová, M.; Votruba, I.; Shibata, R.; Han, B.; Liu, X. H.; Cihlar, T.; Holý, A. Human N-6-Methyl-AMP/Damp Aminohydrolase (Abacavir 5 '-Monophosphate Deaminase) Is Capable of Metabolizing N-6-Substituted Purine Acyclic Nucleoside Phosphonates. Collect. Czech. Chem. Commun. 2008, 73, 275–291.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.