250
Views
2
CrossRef citations to date
0
Altmetric
Articles

An efficient synthesis of 3′-O-triazole modified guanosine-5′-O-monophosphate using click chemistry

, &
Pages 418-427 | Received 15 Jun 2018, Accepted 20 Nov 2018, Published online: 02 Apr 2019

References

  • (a) Faltin, B.; Zengerle, R.; von Stetten, F. Current Methods for Fluorescence-Based Universal Sequence-Dependent Detection of Nucleic Acids in Homogenous Assays and Clinical Applications. Clin. Chem. 2013, 59,1567–1582. DOI: 10.1373/clinchem.2013.205211. (b) Ranasinghe, R. T.; Brown, T. Ultrasensitive Fluorescence-based Methods for Nucleic Acid Detection: Towards Amplification-Free Genetic Analysis. Chem. Commun. 2011, 47,3717–3735. (c) Epstein, J. R.; Biran, I.; Walt, D. R. Fluorescence Based Nucleic Acid Detection and Microarrays. Anal. Chim. Acta. 2002, 469,3–36. DOI: 10.1016/S0003-2670(02)00030-2. (d) Kore, A. R.; Charles, I. Recent Developments in the Synthesis and Applications of C5-Substituted Pyrimidine Nucleosides and Nucleotides. Curr. Org. Chem. 2012, 16,1996–2013.
  • Hiratsuka, T.; Uchida, K. Preparation and Properties of 2,(or 3,)-o-(2,4,6- trinitrophenyl) adenosine 5,-Triphosphate, an Analog of Adenosine Triphosphate. Biochim. Biophys. Acta. 1973, 320, 635–647.
  • Hiratsuka, T. New Ribose-modified Fluorescent Analogs of Adenine and Guanine Nucleotides Available as Substrates for Various Enzymes. Biochim. Biophys. Acta. 1983, 742, 496–508.
  • Wu, J.; Zhang, S.; Meng, Q.; Cao, H.; Li, Z.; Li, X.; Shi, S.; Kim, D. H.; Bi, L.; Turro, N. J.; Ju, J. 3′-O-modified nucleotides as reversible terminators for pyrosequencing. Proc. Natl. Acad. Sci. USA. 2007, 104, 16462–16467.
  • (a) Liang, Y.; Wnuk, S. F. Modification of Purine and Pyrimidine Nucleosides by Direct C-H Bond Activation. Molecules. 2015, 20,4874–4901. (b) Kore, A. R.; Senthilvelan, A.; Shanmugasundaram, M. Highly Regioselective C-5 Iodination of Pyrimidine Nucleotides and Subsequent Chemoselective Sonogashira Coupling with Propargylamine. Tetrahedron Lett. 2012, 53,3070–3072. (c) Kore, A. R.; Shanmugasundaram, M. Highly Stereoselective Palladium-catalyzed Heck Coupling of 5-iodouridine-5′-Triphosphates with Allylamine: a New Efficient Method for the Synthesis of (E)-5-aminoallyl-uridine-5′-Triphosphates. Tetrahedron Lett. 2012, 53,2530–2532. (d) Kore, A. R.; Senthilvelan, A.; Shanmugasundaram, M.; Sandoval, D.; Pardo, A. A New Efficient Stereoselective Method for the Synthesis of (E)-5-Aminoallyl-Pyrimidine-5′-Triphosphates Using Palladium-Catalyzed Heck Reaction. Nucleos. Nucleot. Nucl. 2015, 34,221–228. (e) Kore, A. R.; Senthilvelan, A.; Shanmugasundaram, M. Highly Regioselective C-5 Iodination of Pyrimidine Nucleotides and Subsequent Chemoselective Sonogashira Coupling with Propargylamine. Nucleos. Nucleot. Nucl. Acids. 2015, 34,92–102.
  • (a) Zhang, X.; Liu, P.; Zhu, L. Structural Determinants of Alkyne Reactivity in Copper-Catalyzed Azide-Alkyne Cycloadditions. Molecules. 2016, 21,1697. references cited in. (b) Singh, M. S.; Chowdhury, S.; Koley, S. Advances of Azide-alkyne Cycloaddition-click Chemistry over the Recent Decade. Tetrahedron. 2016, 72,5257–5283. (c) Meldal, M.; TornØe, C. W. Cu-Catalyzed Azide − Alkyne Cycloaddition. Chem. Rev. 2008, 108,2952–3015. (d) Pasini, D. The Click Reaction as an Efficient Tool for the Construction of Macrocyclic Structures. Molecules. 2013, 18,9512–9530. (e) Arseneault, M.; Wafer, C.; Morin, J. F. Recent Advances in Click Chemistry Applied to Dendrimer Synthesis. Molecules. 2015, 20,9263–9294. (f) Chetia, M.; Gehlot, P. S.; Kumar, A.; Sarma, D. A Recyclable/reusable Hydrotalcite Supported Copper Nano Catalyst for 1,4-disubstituted-1,2,3-triazole Synthesis via Click Chemistry Approach. Tetrahedron Lett. 2018, 59,397–401. (g) Matthiesen, R. A.; Varney, M. L.; Xu, P. C.; Rier, A. S.; Wiemer, D. F.; Holstein, S. A. α-Methylation Enhances the Potency of Isoprenoid Triazole Bisphosphonates as Geranyl Diphosphate Synthase Inhibitors. Bioorg. Med. Chem. 2018, 26,376–385.
  • Lakshman, M. K.; Kumar, A.; Balachandran, R.; Day, B. W.; Andrei, G.; Snoeck, R.; Balzarini, J. Synthesis and Biological Properties of C-2 Triazolylinosine Derivatives. J. Org. Chem. 2012, 77, 5870–5883. DOI: 10.1021/jo300628y.
  • Kozarki, M.; Kubacka, D.; Wojtczak, B. A.; Kasprzyk, R.; Marek, R. B.; Kowalska, J. 7-Methylguanosine Monophosphate Analogues with 5′-(1,2,3-triazoyl) moiety: Synthesis and Evaluation as the Inhibitors of cNIIIB Nucleotidase. Bioorg. Med. Chem. 2018, 26, 191–199.
  • Seelhorst, K.; Piernitzki, T.; Lunau, N.; Meier, C.; Hahn, U. B. Synthesis and Analysis of Potential α1,3-fucosyltransferase Inhibitors. Bioorg. Med. Chem. Lett. 2014, 22, 6430–6437. DOI: 10.1016/j.bmc.2014.09.038.
  • Winz, M. L.; Linder, E. C.; Andre, T.; Becker, J.; Jaschke, A. Nucleotidyl Transferase Assisted DNA Labeling with Different Click Chemistries. Nucleic Acids Res. 2015, 43, e110. doi: 10.1093/nar/gkv544. DOI: 10.1093/nar/gkv544.
  • (a) Nikic, I.; Kang, J. H.; Girona, G. E.; Aramburu, I. V.; Lemke, E. A. Labeling Proteins on Live Mammalian Cells Using Click Chemistry. Nat. Protoc. 2015, 10,780–791. DOI: 10.1038/nprot.2015.045. (b) Amblard, F.; Cho, J. H.; Schinazi, F. Cu(I)-Catalyzed Huisgen Azide − Alkyne 1,3-Dipolar Cycloaddition Reaction in Nucleoside, Nucleotide, and Oligonucleotide Chemistry. Chem. Rev. 2009, 109,4207–4220. DOI: 10.1021/cr9001462. (c) Duan, Q.; Lu, K.; Ma, L.; Zhao, D. Concise Synthesis of Triazole-Linked 5′-Peptide-Oligonucleotide Conjugates by Click Chemistry. Nucleos. Nucleot. Nucl. Acids. 2015, 34,579–589.
  • Salic, A.; Mitchison, T. J. A Chemical Method for Fast and Sensitive Detection of DNA Synthesis in Vivo. Proc Natl Acad Sci U S A. 2008, 105,2415–2420.
  • Jao, C. Y.; Salic, A. Exploring RNA Transcription and Turnover in Vivo by Using Click Chemistry. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 15779–15784.
  • (a) Kore, A. R.; Shanmugasundaram, M.; Charles, I.; Vlassov, A. V.; Barta, T. J. Locked Nucleic Acid (LNA)-Modified Dinucleotide mRNA Cap Analogue: Synthesis, Enzymatic Incorporation, and Utilization. J. Am. Chem. Soc. 2009, 131, 6364–6365. (b) Senthilvelan, A.; Muthian, S.; Yepez, G.; Kore, A. R. Synthesis of Acridine-1,8-dione Substituted (E)-5-(3-aminoallyl)-Uridine-5′-Triphosphate: A New Potential Fluorogenic Molecular Probe. Tetrahedron Lett. 2016, 57, 2006–2008. (c) Shanmugasundaram, M.; Senthilvelan, A.; Xiao, Z.; Kore, A. R. An Efficient Protection-Free One-Pot Chemical Synthesis of Modified Nucleoside-5′-Triphosphates. Nucleos. Nucleot. Nucl. Acids 2016, 35, 356–362. (d) Shanmugasundaram, M.; Senthilvelan, A.; Kore, A. R. Gram-Scale Chemical Synthesis of Base-Modified Ribonucleoside-5-O-Triphosphates. Curr. Protoc. Nucl. Acid Chem. 2016, 13.15.1–13.15.10. (e) Shanmugasundaram, M.; Senthilvelan, A.; Kore, A. R. Palladium‐Catalyzed Synthesis of (E)‐5‐(3‐Aminoallyl)‐Uridine‐5′‐O‐Triphosphates. Curr. Protoc. Nucl. Acid Chem 2016, 13.18.1–13.15.10. (f) Shanmugasundaram, M.; Senthilvelan, A.; Kore, A. R. Recent Advances in Synthesis and Biological Activity of Modified Cap Analogs. Curr. Org. Chem 2017, 2530, 2560.
  • Liu, Q.; Ji, Y. Cu2O Acting as a Robust Catalyst in CuAAC Reactions: Water Is the Required Medium. Green Chem. 2011, 13,562–565.
  • Buckley, B. R.; Dann, S. E.; Heaney, H.; Stubbs, E. C. Heterogeneous Catalytic Reactions “On Water” by Using Stable Polymeric Alkynylcopper(I) Pre‐Catalysts: Alkyne/Azide Cycloaddition Reactions. Eur. J. Org. Chem. 2011, 2011, 770–776.[InsertedFromOnline.
  • Liu, M.; Reiser, O. A Copper(I) Isonitrile Complex as a Heterogeneous Catalyst for Azide − Alkyne Cycloaddition in Water. Org. Lett. 2011, 13, 1102–1105.
  • Shin, J. A.; Lim, Y. G.; Lee, K. H. Copper-Catalyzed Azide-Alkyne Cycloaddition Reaction in Water Using Cyclodextrin as a Phase Transfer Catalyst. J. Org. Chem. 2012, 77, 4117–4122.
  • Suresh, P.; Pitchumani, K. Per-6-amino-β-cyclodextrin Catalyzed Asymmetric Michael Addition of Nitromethane and Thiols to Chalcones in Water. Tetrahedron: Assymetry. 2008, 19,2037–2044.
  • Macaev, F.; Boldescu, V. Cyclodextrins in Asymmetric and Stereospecific Synthesis. Symmetry. 2015, 7,1699–1720.
  • Shanmugasundaram, M.; Charles, I.; Kore, A. R. Design, synthesis and Biological Evaluation of Dinucleotide mRNA Cap Analog Containing Propargyl Moiety. Bioorg. Med. Chem. 2016, 15, 1204–1208. DOI: 10.1016/j.bmc.2016.01.048.
  • Tornoe, C. W.; Christensen, C.; Meldal, M. Peptidotriazoles on Solid Phase: [1,2,3]-Triazoles by Regiospecific Copper(I)-Catalyzed 1,3-Dipolar Cycloadditions of Terminal Alkynes to Azides. J. Org. Chem. 2002, 67, 3057–3064.
  • Bock, V. D.; Hiemstra, H.; van Maarseveen, J. H. CuI‐Catalyzed Alkyne– Azide “Click” Cycloadditions from a Mechanistic and Synthetic Perspective. Eur. J. Org. Chem. 2006, 2006, 51–68.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.