278
Views
4
CrossRef citations to date
0
Altmetric
Review

Potential epigenomic co-management in rare diseases and epigenetic therapy

Pages 752-780 | Received 07 Dec 2017, Accepted 11 Mar 2019, Published online: 11 May 2019

References

  • Rare Disease Act of 2002. http://frwebgate.access.gpo.gov/cgi-bin/getdoc.cgi?dbname=107_cong_public_laws&docid=f:publ280.107.
  • Rare Diseases: What Are We Talking About? http://malattierare.regione.veneto.it/inglese/dicosaparliamo_ing.php.
  • Baldovino, S.; Moliner, A. M.; Taruscio, D.; Daina, E.; Roccatello, D. Rare Diseases in Europe: From a Wide to a Local Perspective. Isr. Med. Assoc. J. 2016, 18, 359–363.
  • Weatherall, D. J. Keynote Address: The Challenge of Thalassemia for the Developing Countries. Ann. N. Y. Acad. Sci. 2005, 1054, 11–17. DOI:10.1196/annals.1345.002.
  • Ayme, S.; Schmidtke, J. Networking for Rare Diseases: A Necessity for Europe. Bundesgesundheitsbl. 2007, 50, 1477–1483. DOI:10.1007/s00103-007-0381-9.
  • Lupu, D. S.; Niculescu, M. D. Epigenetic Implications in Rare Diseases. Romanian J. Rare Dis. 2011, 2, 10–21.
  • Mann, M. R.; Bartolomei, M. S. Epigenetic Reprogramming in the Mammalian Embryo: Struggle of the Clones. Genome Biol 2002, 3, reviews 1003.1–1003.4.
  • Gilbert, S. F. Developmental Biology, 6th ed. Sinauer Associates Inc.: Sunderland, MA, 2000.
  • Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. Molecular Biology of the Cell, 4th ed. Taylor and Francis: New York and London, 2002.
  • Reik, W.; Dean, W.; Walter, J. Epigenetic Reprogramming in Mammalian Development. Science 2001, 293, 1089–1093. DOI:10.1126/science.1063443.
  • Surani, M. A. Reprogramming of Genome Function through Epigenetic Inheritance. Nature 2001, 414, 122–128. DOI:10.1038/35102186.
  • Bird, A. Perceptions of Epigenetics. Nature 2007, 447, 396–398. DOI:10.1038/nature05913.
  • Berger, S. L.; Kouzarides, T.; Shiekhattar, R.; Shilatifard, A. An Operational Definition of Epigenetics. Genes Dev. 2009, 23, 781–783. DOI:10.1101/gad.1787609.
  • Skinner, M. K. Environmental Epigenetic Transgenerational Inheritance and Somatic Epigenetic Mitotic Stability. Epigenetics 2011, 6, 838–842.
  • Pembrey, M.; Saffery, R.; Bygren, L. O. Human Transgenerational Responses to Early-Life Experience: Potential Impact on Development, Health and Biomedical Research. J. Med. Genet. 2014, 51, 563–572. DOI:10.1136/jmedgenet-2014-102577.
  • Robertson, K. D. DNA Methylation and Human Disease. Nat. Rev. Genet. 2005, 6, 597–610. DOI:10.1038/nrg1655.
  • Callinan, P. A.; Feinberg, A. P. The Emerging Science of Epigenomics. Hum. Mol. Genet. 2006, 15 (Spec. No. 1), R95–R101. DOI:10.1093/hmg/ddl095.
  • Ito, S.; D'Alessio, A. C.; Taranova, O. V.; Hong, K.; Sowers, L. C.; Zhang, Y. Role of Tet Proteins in 5mC to 5hmC Conversion, ES-cell Self-Renewal and Inner Cell Mass Specification. Nature 2010, 466, 1129–1133. DOI:10.1038/nature09303.
  • Tahiliani, M.; Koh, K. P.; Shen, Y.; Pastor, W. A.; Bandukwala, H.; Brudno, Y.; Agarwal, S.; Iyer, L. M.; Liu, D. R.; Aravind, L.; Rao, A. Conversion of 5-Methylcytosine to 5-Hydroxymethylcytosine in Mammalian DNA by MLL Partner TET1. Science 2009, 324, 930–935. DOI:10.1126/science.1170116.
  • Morgan, H. D.; Santos, F.; Green, K.; Dean, W.; Reik, W. Epigenetic Reprogramming in Mammals. Hum. Mol. Genet 2005, 14 (Spec. No. 1), R47–R58. DOI:10.1093/hmg/ddi114.
  • Nafee, T. M.; Farrell, W. E.; Carroll, W. D.; Fryer, A. A.; Ismail, K. M. K. Epigenetic Control of Fetal Gene Expression. BJOG 2008, 115, 158–168. DOI:10.1111/j.1471-0528.2007.01528.x.
  • Flores, K. B.; Wolschin, F.; Amdam, G. V. The Role of Methylation of DNA in Environmental Adaptation. Integr. Comp. Biol. 2013, 53, 359–372. DOI:10.1093/icb/ict019.
  • Donkin, I.; Barres, R. Sperm Epigenetics and Influence of Environmental Factors. Mol. Metab. 2018, 14, 1. DOI:10.1016/j.molmet.2018.02.006.
  • Reik, W. Stability and Flexibility of Epigenetic Gene Regulation in Mammalian Development. Nature 2007, 447, 425–432. DOI:10.1038/nature05918.
  • Hall, L.; Kelley, E. The Contribution of Epigenetics to Understanding Genetic Factors in Autism. Autism 2014, 18, 872–881. DOI:10.1177/1362361313503501.
  • Quina, A. S.; Buschbeck, M.; Di Croce, L. Chromatin Structure and Epigenetics. Biochem. Pharmacol. 2006, 72, 1563–1569. DOI:10.1016/j.bcp.2006.06.016.
  • Hake, S. B.; Xiao, A.; Allis, C. D. Linking the Epigenetic “‘Language’ of Covalent Histone Modifications to Cancer.” Br. J. Cancer. 2004, 90, 761–769. DOI:10.1038/sj.bjc.6601575.
  • Berger, S. L. The Complex Language of Chromatin Regulation during Transcription. Nature 2007, 447, 407–412. DOI:10.1038/nature05915.
  • Gurard-Levin, Z. A.; Almouzni, G. Histone Modifications and a Choice of Variant: A Language That Helps the Genome Express Itself. F1000Prime Rep. 2014, 6, 76DOI:10.12703/P6-76.
  • Feinberg, A. P. Phenotypic Plasticity and the Epigenetics of Human Disease. Nature 2007, 447, 433–440. DOI:10.1038/nature05919.
  • Koch, C. M.; Andrews, R. M.; Flicek, P.; Dillon, S. C.; Karaoz, U.; Clelland, G. K.; Wilcox, S.; Beare, D. M.; Fowler, J. C.; Couttet, P.; et al. The Landscape of Histone Modifications across 1% of the Human Genome in Five Human Cell Lines. Genome Res. 2007, 17, 691–707. DOI:10.1101/gr.5704207.
  • Wang, X.; Herr, R. A.; Chua, W. J.; Lybarger, L.; Wiertz, E. J. H. J.; Hansen, T. H. Ubiquitination of Serine, Threonine, or Lysine Residues on the Cytoplasmic Tail Can Induce ERAD of MHC-I by Viral E3 Ligase mK3. J. Cell Biol. 2007, 177, 613–624. DOI:10.1083/jcb.200611063.
  • Teng, S.; Luo, H.; Wang, L. Predicting Protein Sumoylation Sites from Sequence Features. Amino Acids 2012, 43, 447–455. DOI:10.1007/s00726-011-1100-2.
  • Mattick, J. S.; Amaral, P. P.; Dinger, M. E.; Mercer, T. R.; Mehler, M. F. RNA Regulation of Epigenetic Processes. Bioessays 2009, 31, 51–59. DOI:10.1002/bies.080099.
  • Pan, Q.; Shai, O.; Lee, L. J.; Frey, B. J.; Blencowe, B. J. Deep Surveying of Alternative Splicing Complexity in the Human Transcriptome by High-Throughput Sequencing. Nat. Genet. 2008, 40, 1413–1415. DOI:10.1038/ng.259.
  • Faustino, N. A.; Cooper, T. A. Pre-mRNA Splicing and Human Disease. Genes Dev. 2003, 17, 419–437. DOI:10.1101/gad.1048803.
  • Qian, W.; Liu, F. Regulation of Alternative Splicing of Tau Exon 10. Neurosci. Bull. 2014, 30, 367–377. DOI:10.1007/s12264-013-1411-2.
  • Stilling, R. M.; Benito, E.; Gertig, M.; Barth, J.; Capece, V.; Burkhardt, S.; Bonn, S.; Fischer, A. De-Regulation of Gene Expression and Alternative Splicing Affects Distinct Cellular Pathways in the Aging Hippocampus. Front. Cell. Neurosci. 2014, 8, 373.
  • Tazi, J.; Bakkour, N.; Stamm, S. Alternative Splicing and Disease. Biochim. Biophys. Acta. 2009, 1792, 14–26. DOI:10.1016/j.bbadis.2008.09.017.
  • Mills, J. D.; Nalpathamkalam, T.; Jacobs, H. I.; Janitz, C.; Merico, D.; Hu, P.; Janitz, M. RNA-Seq Analysis of the Parietal Cortex in Alzheimer’s Disease Reveals Alternative Spliced Isoforms Related to Lipid Metabolism. Neurosci. Lett. 2013, 536, 90–95. DOI:10.1016/j.neulet.2012.12.042.
  • Karambataki, M.; Malousi, A.; Kouidou, S. Risk-Associated Coding Synonymous SNPs in Type 2 Diabetes and Neurodegenerative Diseases: Genetic Silence and the Underrated Association with Splicing Regulation and Epigenetics. Mutat. Re.s 2014, 770, 85–93. DOI:10.1016/j.mrfmmm.2014.09.005.
  • Raj, B.; Blencowe, B. J. Alternative Splicing in the Mammalian Nervous System: Recent Insights into Mechanisms and Functional Roles. Neuron 2015, 87, 14–27. DOI:10.1016/j.neuron.2015.05.004.
  • Brown, S. J.; Stoilov, P.; Xing, Y. Chromatin and Epigenetic Regulation of pre-mRNA processing. Hum. Mol. Genet. 2012, 21, R90–R96. DOI:10.1093/hmg/dds353.
  • Athan, E. S.; Lee, J. H.; Arriaga, A.; Mayeux, R. P.; Tycko, B. Polymorphisms in the Promoter of the Human APP Gene: Functional Evaluation and Allele Frequencies in Alzheimer Disease. Arch. Neurol. 2002, 59, 1793–1799. DOI:10.1001/archneur.59.11.1793.
  • Caceres, J. F.; Kornblihtt, A. R. Alternative Splicing: Multiple Control Mechanisms and Involvement in Human Disease. Trends Genet. 2002, 18, 186–193. DOI:10.1016/S0168-9525(01)02626-9.
  • Theuns, J.; Brouwers, N.; Engelborghs, S.; Sleegers, K.; Bogaerts, V.; Corsmit, E.; De Pooter, T.; van Duijn, C. M.; De Deyn, P. P.; Van Broeckhoven, C. Promoter Mutations That Increase Amyloid Precursor- Protein Expression Are Associated with Alzheimer Disease. Am. J. Hum. Genet. 2006, 78, 936–946. DOI:10.1086/504044.
  • Lupski, J. R.; Stankiewicz, P. Genomic Disorders: Molecular Mechanisms for Rearrangements and Conveyed Phenotypes. PLoS Genet. 2005, I, e49. DOI:10.1371/journal.pgen.0010049.
  • Wenli, G.; Feng, Z.; Lupski, J. R. Mechanisms for Human Genomic Rearrangements. Pathogenetics. 2008, I, 4. DOI:10.1186/1755-8417-1-4.
  • Nowell, P. C.; Hungerford, D. A. Chromosome Studies on Normal and Leukemic Human Leukocytes. J. Natl. Cancer Inst. 1960, 25, 85–109.
  • Nowell, P. C.; Hungerford, D. A. Chromosome Studies in Human Leukemia. II. Chronic Granulocytic Leukemia. J. Natl. Cancer Inst. 1961, 27, 1013–1035. DOI:10.1093/jnci/27.5.1013.
  • Bassing, C. H.; Swat, W.; Alt, F. W. The Mechanism and Regulation of Chromosomal V(D)J Recombination. Cell 2002, 109, S45–S55. DOI:10.1016/S0092-8674(02)00675-X.
  • Stavnezer, J.; Guikema, J. E.; Schrader, C. E. Mechanism and Regulation of Class Switch Recombination. Annu. Rev. Immunol. 2008, 26, 261–292. DOI:10.1146/annurev.immunol.26.021607.090248.
  • Chen, J. M.; Chuzhanova, N.; Stenson, P. D.; Ferec, C.; Cooper, D. N. Complex Gene Rearrangements Caused by Serial Replication Slippage. Hum. Mutat. 2005, 26, 125–134. DOI:10.1002/humu.20202.
  • Mani, R. S.; Chinnaiyan, A. M. Triggers for Genomic Rearrangements: Insights into Genomic, Cellular and Environmental Influences. Nat. Rev. Genet. 2010, 11, 819–829. DOI:10.1038/nrg2883.
  • Thomas, P.; Frederick, W. A. Cis-Regulatory Elements and Epigenetic Changes Control Genomic Rearrangements of the IgH Locus. Adv. Immunol. 2008, 99, 1–32.
  • Li, J.; Harris, R. A.; Cheung, S. W.; Coarfa, C.; Jeong, M.; Goodell, M. A.; White, L. D.; Patel, A.; Kang, S. H.; Shaw, C.; et al. Genomic Hypomethylation in the Human Germline Associates with Selective Structural Mutability in the Human Genome. PLoS Genet. 2012, 8, e1002692. DOI:10.1371/journal.pgen.1002692.
  • Liu, Y.; Subrahmanyam, R.; Chakraborty, T.; Sen, R.; Desiderio, S. A Plant Homeodomain in RAG-2 That Binds Hypermethylated Lysine 4 of Histone H3 Is Necessary for Efficient Antigen-Receptor-Gene Rearrangement. Immunity 2007, 27, 561–571. DOI:10.1016/j.immuni.2007.09.005.
  • Matthews, A. G. W.; Kuo, A. J.; Ramón-Maiques, S.; Han, S.; Champagne, K. S.; Ivanov, D.; Gallardo, M.; Carney, D.; Cheung, P.; Ciccone, D. N.; et al. RAG2 PHD Finger Couples Histone H3 Lysine 4 Trimethylation with V(D)J Recombination. Nature 2007, 450, 1106–1110. DOI:10.1038/nature06431.
  • Shimazaki, N.; Tsai, A. G.; Lieber, M. R. H3K4me3 Stimulates the V(D)J RAG Complex for Both Nicking and Hairpinning in Trans in Addition to Tethering in Cis: Implications for Translocations. Mol. Cell. 2009, 34, 535–544. DOI:10.1016/j.molcel.2009.05.011.
  • Cheung, V. G.; Sherman, S. L.; Feingold, E. Genetics. Genetic Control of Hotspots. Science 2010, 327, 791–792. DOI:10.1126/science.1187155.
  • Ng, H. H.; Ciccone, D. N.; Morshead, K. B.; Oettinger, M. A.; Struhl, K. Lysine-79 of Histone H3 Is Hypomethylated at Silenced Loci in Yeast and Mammalian Cells: A Potential Mechanism for Position-Effect Variegation. Proc. Natl. Acad. Sci. USA. 2003, 100, 1820–1825. DOI:10.1073/pnas.0437846100.
  • Nguyen, K. V. Epigenetic Regulation in Amyloid Precursor Protein with Genomic Rearrangement and the Lesch-Nyhan Syndrome. Nucleosides Nucleotides Nucleic Acids 2015, 34, 674–690. DOI:10.1080/15257770.2015.1071844.
  • Oey, H.; Whitelaw, E. On the Meaning of the Word ‘Epimutation’. Trends Genet. 2014, 30, 519–520. DOI:10.1016/j.tig.2014.08.005.
  • Horsthemke, B. Epimutations in Human Disease. Curr. Top. Microbiol. Immunol. 2006, 310, 45–59.
  • Zhang, F.; Gu, W.; Hurles, M. E.; Lupski, R. Copy Number Variation in Human Health, Disease, and Evolution. Annu. Rev. Genomics Hum. Genet. 2009, 10, 451–481. DOI:10.1146/annurev.genom.9.081307.164217.
  • Nguyen, K. V.; Naviaux, R. K.; Paik, K. K.; Nyhan, W. L. Syndrome: mRNA Expression of HPRT in Patients with Enzyme Proven Deficiency of HPRT and Normal HPRT Coding Region of the DNA. Mol. Genet. Metab. 2012, 106, 498–501. DOI:10.1016/j.ymgme.2012.06.003.
  • Nguyen, K. V.; Naviaux, R. K.; Paik, K. K.; Nakayama, T.; Nyhan, W. L. Syndrome: Real-Time RT-PCR for mRNA Quantification in Variable Presentation in Three Affected Family Members. Nucleosides Nucleotides Nucleic Acids 2012, 31, 616–629. DOI:10.1080/15257770.2012.714028.
  • Jakovcevski, M.; Akbarian, S. Epigenetic Mechanisms in Neurological Disease. Nat. Med. 2012, 18, 1194–1204. DOI:10.1038/nm.2828.
  • Amir, R. E.; Van den Veyver, I. B.; Wan, M.; Tran, C. Q.; Francke, U.; Zoghbi, H. Rett Syndrome Is Caused by Mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2 . Nat. Genet. 1999, 23, 185–188. DOI:10.1038/13810.
  • Hansen, R. S.; Wijmenga, C.; Luo, P.; Stanek, A. M.; Canfield, T. K.; Weemaes, C. M. R.; Gartler, S. M. The DNMT3B DNA Methyltransferase Gene Is Mutated in the ICF Immunodeficiency Syndrome. Proc. Natl. Acad. Sci. USA. 1999, 96, 14412–14417.
  • Baets, J.; Duan, X.; Wu, Y.; Smith, G.; Seeley, W. W.; Mademan, I.; McGrath, N. M.; Beadell, N. C.; Khoury, J.; Botuyan, M. V.; et al. Defects of Mutant DNMT1 Are Linked to a Spectrum of Neurological Disorders. Brain 2015, 138, 845–861. DOI:10.1093/brain/awv010.
  • Park, E.; Kim, Y.; Ryu, H.; Kowall, N. W.; Lee, J.; Ryu, H. Epigenetic Mechanisms of Rubinstein-Taybi Syndrome. Neuromol. Med. 2014, 16, 16–24. DOI:10.1007/s12017-013-8285-3.
  • Berdasco, M.; Ropero, S.; Setien, F.; Fraga, M.; Lapunzina, P.; Losson, R.; Alaminos, M.; Cheung, N. K.; Rahman, N.; Esteller, M. Epigenetic Inactivation of the Sotos Overgrowth Syndrome Gene Histone Methyltransferase NSD1 in Human Neuroblastoma and Glioma. Proc. Natl. Acad. Sci. USA. 2009, 106, 21830–21835. DOI:10.1073/pnas.0906831106.
  • Deardorff, M. A.; Porter, N. J.; Christianson, D. W. Structural Aspects of HDAC8 Mechanism and Dysfunction in Cornelia de Lange Syndrome Spectrum Disorders. Protein Sci. 2016, 25, 1965–1976. DOI:10.1002/pro.3030.
  • Nicholls, R. D.; Knepper, J. L. Genome Organization, Function, and Imprinting in Prader-Willi and Angelman Syndromes. Annu. Rev. Genom. Hum. Genet. 2001, 2, 153–175. DOI:10.1146/annurev.genom.2.1.153.
  • Weksberg, R.; Smith, A. C.; Squire, J.; Sadowski, P. Beckwith-Wiedemann Syndrome Demonstrates a Role for Epigenetic Control of Normal Development. Hum. Mol. Genet. 2003, 12, R61–R68.
  • Verona, R. I.; Mann, M. R.; Bartolomei, M. S. Genomic Imprinting: Intricacies of Epigenetic Regulation in Clusters. Annu. Rev. Cell Dev. Biol. 2003, 19, 237–259. DOI:10.1146/annurev.cellbio.19.111401.092717.
  • Ohta, T.; Gray, T. A.; Rogan, P. K.; Buiting, K.; Gabriel, J. M.; Saitoh, S.; Muralidhar, B.; Bilienska, B.; Krajewska-Walasek, M.; Driscoll, D. J.; et al. Imprinting-Mutation Mechanisms in Prader-Willi Syndrome. A. J. Hum. Genet. 1999, 64, 397–413. DOI:10.1086/302233.
  • Sahoo, T.; del Gaudio, D.; German, J. R.; Shinawi, M.; Peters, S. U.; Person, R. E.; Garnica, A.; Cheung, S. W.; Beaudet, A. L. Prader-Willi Phenotype Caused by Paternal Deficiency for the HBII-85 C/D Box Small Nucleolar RNA Cluster. Nat. Genet. 2008, 40, 719–721. DOI:10.1038/ng.158.
  • Buiting, K.; Groß, S.; Lich, C.; Gillessen-Kaesbach, G.; El-Maarri, O.; Horsthemke, B. Epimutations in Prader-Willi and Angelmann Syndromes: A Molecular Study of 136 Patients with an Imprinting Defect. Am. J. Hum. Genet. 2003, 72, 571–577. DOI:10.1086/367926.
  • Buiting, K.; Barnicoat, A.; Lich, C.; Pembrey, M.; Malcolm, S.; Horsthemke, B. Disruption of the Bipartite Imprinting Center in a Family with Angelman Syndrome. Am. J. Hum. Genet. 2001, 68, 1290–1294. DOI:10.1086/320120.
  • Kishino, T.; Lalande, M.; Wagstaff, J. UBE3A/E6-AP Mutations Cause Angelman syndrome. Nat. Genet. 1997, 15, 70–73. DOI:10.1038/ng0197-70.
  • Soejima, H.; Higashimoto, K. Epigenetic and Genetic Alterations of the Imprinting Disorder Beckwit-Wiedemann Syndrome and Related Disorders. J. Hum. Genet. 2013, 58, 402–409. DOI:10.1038/jhg.2013.51.
  • Inoue, T.; Nakamura, A.; Matsubara, K.; Nyuzuki, H.; Nagasaki, K.; Oka, A.; Fukami, M.; Kagami, M. Continuos Hypomethylation of the KCNQ1OT1: TSS-DMR in Monochorionic Twins Discordant for Beckwith-Wiedemann Syndrome. Am. J. Med. Genet. 2017, 173A, 2847–2850. DOI:10.1002/ajmg.a.38419.
  • Bedeschi, M. F.; Calvello, M.; Paganini, L.; Pezzani, L.; Baccarin, M.; Fontana, L.; Sirchia, S. M.; Guerneri, S.; Canazza, L.; Leva, E.; et al. Sequence Variants Identification at the KCNQ1OT1:TSS Differentially Methylated Region in Isolated Omphalocele Cases. BMC Med. Genet. 2017, 18, 115.
  • Berdasco, M.; Esteller, M. Genetic Syndromes Caused by Mutations in Epigenetic Genes. Hum. Genet. 2013, 132, 359–383. DOI:10.1007/s00439-013-1271-x.
  • Martin, D. I.; Cropley, J. E.; Suter, C. M. Epigenetics in Disease: Leader or Follower? Epigenetics 2011, 6, 843–848.
  • Feinberg, A. P.; Vogelstein, B. Hypomethylation Distinguishes Genes of Some Human Cancers from Their Normal Counterparts. Nature 1983, 301, 89–92. DOI:10.1038/301089a0.
  • Kelly, T. K.; De Carvalho, D. D.; Jones, P. A. Epigenetic Modifications as Therapeutic Targets. Nat. Biotechnol. 2010, 28, 1069–1078. DOI:10.1038/nbt.1678.
  • Heerboth, S.; Lapinska, K.; Snyder, N.; Leary, M.; Rollinson, S.; Sarkar, S. Use of Epigenetic Drugs in Disease: An Overview. Genet. Epigenet. 2014, 6, 9–19. DOI:10.4137/GEG.S12270.
  • Hahnen, E.; Hauke, J.; Trankle, C.; Eyupoglu, I. Y.; Wirth, B.; Blumcke, I. Histone Deacetylase Inhibitors: Possible Implications for Neurodegenerative Disorders. Expert. Opin. Investig. Drugs 2008, 17, 169–184. DOI:10.1517/13543784.17.2.169.
  • Chuang, D. M.; Leng, Y.; Marinova, Z.; Kim, H. J.; Chiu, C. T. Multiple Roles of HDAC Inhibition in Neurodegenerative Conditions. Trends Neurosci. 2009, 32, 591–601. DOI:10.1016/j.tins.2009.06.002.
  • Covington, H. E., III; Maze, I.; LaPlant, Q. C.; Vialou, V. F.; Ohnishi, Y. N.; Berton, O.; Fass, D. M.; Renthal, W.; Rush, A. J., III; Wu, E. Y.; et al. Antidepressant Actions of Histone Deacetylase Inhibitors. J. Neurosci. 2009, 29, 11451–11460. DOI:10.1523/JNEUROSCI.1758-09.2009.
  • D’Mello, S. R. Histone Deacetylases as Targets for the Treatment of Human Neurodegenerative Diseases. Drug News Perspect. 2009, 22, 513–524.
  • Fischer, A.; Sananbenesi, F.; Mungenast, A.; Tsai, L. H. Targeting the Correct HDAC(s) to Treat Cognitive Disorders. Trends Pharmacol. Sci. 2010, 31, 605–617. DOI:10.1016/j.tips.2010.09.003.
  • Morris, M. J.; Karra, A. S.; Monteggia, L. M. Histone Deacetylases Govern Cellular Mechanisms Underlying Behavioral and Synaptic Plasticity in the Developing and Adult Brain. Behav. Pharmacol. 2010, 21, 409–419. DOI:10.1097/FBP.0b013e32833c20c0.
  • Mikaelsson, M. A.; Miller, C. A. The Path to Epigenetic Treatment of Memory Disorders. Neurobiol. Learn. Mem. 2011, 96, 13–18. DOI:10.1016/j.nlm.2011.02.003.
  • Mill, J. Toward an Integrated Genetic and Epigenetic Approach to Alzheimer’s Disease. Neurobiol. Aging. 2011, 32, 1188–1191. DOI:10.1016/j.neurobiolaging.2010.10.021.
  • Caraci, F.; Leggio, G. M.; Drago, F.; Salomone, S. Epigenetic Drugs for Alzheimer’s Disease: Hopes and Challenges. Br. J. Clin. Pharmacol. 2013, 75, 1154–1155. DOI:10.1111/j.1365-2125.2012.04443.x.
  • Adwan, L.; Zawia, N. H. Epigenetics: A Novel Therapeutic Approach for the Treatment of Alzheimer’s Disease. Pharmacol. Ther. 2013, 139, 41–50. DOI:10.1016/j.pharmthera.2013.03.010.
  • Simoes-Pires, C.; Zwick, V.; Nurisso, A.; Schenker, E.; Carrupt, P. A.; Cuendet, M. HDAC6 as a Target for Neurodegenerative Diseases: What Makes It Different from the Other HDACs? Mol. Neurodegener. 2013, 8, 7. DOI:10.1186/1750-1326-8-7.
  • Didonna, A.; Opal, P. The Promise and Perils of HDAC Inhibitors in neurodegeneration. Ann. Clin. Transl. Neurol. 2015, 2, 79–101. DOI:10.1002/acn3.147.
  • Yang, S. S.; Zhang, R.; Wang, G.; Zhang, Y. F. The Development Prospection of HDAC Inhibitors as a Potential Therapeutic Direction in Alzheimer’s Disease. Transl. Neurodegener. 2017, 6, 19.
  • Chiappinelli, K. B.; Strissel, P. L.; Desrichard, A.; Li, H.; Henke, C.; Akman, B.; Hein, A.; Rote, N. S.; Cope, L. M.; Snyder, A.; et al. Inhibiting DNA Methylation Causes an Interferon Response in Cancer via dsRNA Including Endogenous Retroviruses. Cell 2015, 162, 974–986. DOI:10.1016/j.cell.2015.07.011.
  • Roulois, D.; Yau, H. L.; Singhania, R.; Wang, Y.; Danesh, A.; Shen, S. Y.; Han, H.; Liang, G.; Pugh, T. J.; Jones, P. A.; et al. DNA-Demethylating Agents Target Colorectal Cancer Cells by Inducing Viral Mimicry by Endogenous Transcripts. Cell 2015, 162, 961–973. DOI:10.1016/j.cell.2015.07.056.
  • Brocks, D.; Schmidt, C. R.; Daskalakis, M.; Jang, H. S.; Shah, N. M.; Li, D.; Li, J.; Zhang, B.; Hou, Y.; Laudato, S.; et al. DNMT and HDAC Inhibitors Induce Cryptic Transcription Start Sites Encoded in Long Terminal Repeats. Nat. Genet. 2017, 49, 1052–1060. DOI:10.1038/ng.3889.
  • Wiesner, T.; Lee, W.; Obenauf, A. C.; Ran, L.; Murali, R.; Zhang, Q. F.; Wong, E. W. P.; Hu, W.; Scott, S. N.; Shah, R. H.; et al. Alternative Transcription Initiation Leads to Expression of a Novel ALK Isoform in Cancer. Nature 2015, 526, 453–457. DOI:10.1038/nature15258.
  • Vizoso, M.; Ferreira, H. J.; Lopez-Serra, P.; Carmona, F. J.; Martinez-Cardus, A.; Girotti, M. R.; Villanueva, A.; Guil, S.; Moutinho, C.; Liz, J.; et al. Epigenetic Activation of a Cryptic TBC1D16 Transcript Enhances Melanoma Progression by Targeting EGFR. Nat. Med. 2015, 21, 714–750.
  • Egger, G.; Liang, G.; Aparicio, A.; Jones, A. Epigenetics in Human Disease and Prospects for Epigenetic Therapy. Nature 2004, 429, 457–463. DOI:10.1038/nature02625.
  • Nguyen, K. V.; Nyhan, W. L. Quantification of Various APP-mRNA Isoforms and Epistasis in Lesch-Nyhan Disease. Neurosci. Lett. 2017, 643, 52–58. DOI:10.1016/j.neulet.2017.02.016.
  • Nguyen, K. V. Epigenetic Regulation in Amyloid Precursor Protein and the Lesch-Nyhan Syndrome. Biochem. Biophys. Res. Commun. 2014, 446, 1091–1095. DOI:10.1016/j.bbrc.2014.03.062.
  • Nguyen, K. V.; Leydiker, K.; Wang, R.; Abdenur, J.; Nyhan, W. L. A Neurodevelopmental Disorder with a Nonsense Mutation in the Ox-2 Antigen Domain of the Amyloid Precursor Protein (APP) Gene. Nucleosides Nucleotides Nucleic Acids 2017, 36, 317–327. DOI:10.1080/15257770.2016.1267361.
  • Ray, B.; Long, J. M.; Sokol, D. K.; Lahiri, D. K. Increased Secreted Amyloid Precursor Protein-α (sAPPα) in Severe Autism: Proposal of a Specific, Anabolic Pathway and Putative Biomarker. PLoS One 2011, 6, e20405. DOI:10.1371/journal.pone.0020405.
  • Sokol, D. K.; Maloney, B.; Long, J. M.; Ray, B.; Lahiri, D. K. Autism, Alzheimer disease, and fragile X: APP, FMRP, and mGluR5 are molecular links. Neurology 2011, 76, 1344–1352. DOI:10.1212/WNL.0b013e3182166dc7.
  • Bryson, J. B.; Hobbs, C.; Parsons, M. J.; Bosch, K. D.; Pandraud, A.; Walsh, F. S.; Doherty, P.; Greensmith, L. Amyloid Precursor Protein (APP) Contributes to Pathology in the SODG93A Mouse Model of Amyotrophic Lateral Sclerosis. Hum. Mol. Genet. 2012, 21, 3871–3882. DOI:10.1093/hmg/dds215.
  • Matias-Guiu, J. A.; Oreja-Guevara, C.; Cabrera-Martin, M. N.; Moreno-Ramos, T.; Carreras, J. L.; Matias-Guiu, J. Amyloid Proteins and Their Role in Multiple Sclerosis. Considerations in the Use of Amyloid-PET Imaging. Front. Neurol. 2016, 7, 53.
  • Chetelat, G. Alzheimer’s Disease: Aβ-Independent Processes-Rethinking Preclinical AD. Nat. Rev. 2013, 9, 123–124.
  • Saonere, J. A. Antisense Therapy, a Magic Bullet for the Treatment of Various Diseases: Present and Future Prospects. J. Med. Genet. Genom. 2011, 3, 77–83.
  • Xu, D.; Juliano, R. L. Epigenetic Modulation of Gene Expression in Mammalian Cells. Crit. Rev. Eukaryot. Gene Expr. 2005, 15, 93–101.
  • Lebleu, B.; Moulton, H. M.; Abes, R.; Ivanova, G. D.; Abes, S.; Stein, D. A.; Iversen, P. L.; Arzumanov, A. A.; Gait, M. J. Cell Penetrating Peptide Conjugates of Steric Block Oligonucleotides. Adv. Drug Deliv. Rev. 2008, 60, 517–529. DOI:10.1016/j.addr.2007.09.002.
  • Abes, R.; Arzumanov, A.; Moulton, H.; Abes, S.; Ivanova, G.; Gait, M. J.; Iversen, P.; Lebleu, B. Arginine-Rich Cell Penetrating Peptides: Design, Structure-Activity, and Applications to Alter Pre-mRNA Splicing by Steric-Block Oligonucleotides. J. Pept. Sci. 2008, 14, 455–460. DOI:10.1002/psc.979.
  • Lacerra, G.; Sierakowska, H.; Carestia, C.; Fucharoen, S.; Summerton, J.; Weller, D.; Kole, R. Restoration of Hemoglobin a Synthesis in Erythroid Cells from Peripheral Blood of Thalassemic Patients. Proc. Natl. Acad. Sci. USA 2000, 97, 9591–9596. DOI:10.1073/pnas.97.17.9591.
  • Mann, C. J.; Honeyman, K.; Cheng, A. J.; Ly, T.; Lloyd, F.; Fletcher, S.; Morgan, J. E.; Partridge, T. A.; Wilton, S. D. Antisense-Induced Exon Skipping and Synthesis of Dystrophin in the mdx Mouse. Proc. Natl. Acad. Sci. USA. 2001, 98, 42–47. DOI:10.1073/pnas.011408598.
  • Aartsma-Rus, A.; van Ommen, G. J. Antisense-Mediated Exon Skipping: A Versatile Tool with Therapeutic and Research Applications. RNA 2007, 13, 1609–1624. DOI:10.1261/rna.653607.
  • Friedman, K. J.; Kole, J.; Cohn, J. A.; Knowles, M. R.; Silverman, L. M.; Kole, R. Correction of Aberrant Splicing of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Gene by Antisense Oligonucleotides. J. Biol. Chem. 1999, 274, 36193–36199. DOI:10.1074/jbc.274.51.36193.
  • Scaffidi, P.; Misteli, T. Reversal of the Cellular Phenotype in the Premature Aging Isease Hutchinson-Gilford Progeria Syndrome. Nat. Med. 2005, 11, 440–445. DOI:10.1038/nm1204.
  • Liu, S.; Asparuhova, M.; Brondani, V.; Ziekau, I.; Klimkait, T.; Schumperli, D. Inhibition of HIV-1 Multiplication by Antisense U7 snRNAs and siRNAs Targeting Cyclophilin A. Nucleic Acids Res. 2004, 32, 3752–3759. DOI:10.1093/nar/gkh715.
  • Kalbfuss, B.; Mabon, S. A.; Misteli, T. Correction of Alternative Splicing of Tau in Frontotemporal Dementia and Parkinsonism Linked to Chromosome 17. J. Biol. Chem. 2001, 276, 42986–42993. DOI:10.1074/jbc.M105113200.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.