221
Views
2
CrossRef citations to date
0
Altmetric
Articles

Synthesis and biological evaluation of a MraY selective analogue of tunicamycins

, , , , , , & show all
Pages 349-364 | Received 28 Jun 2019, Accepted 25 Jul 2019, Published online: 30 Sep 2019

References

  • Bouhss, A.; Mengin-Lecreulx, D.; Le Beller, D.; Van Heijenoort, J. Topological Analysis of the MraY Protein Catalyzing the First Membrane Step of Peptidoglycan Synthesis. Mol. Microbiol. 1999, 34, 576–585. DOI: 10.1046/j.1365-2958.1999.01623.x.
  • Bouhss, A.; Trunkfield, A. E.; Bugg, T. D.; Mengin-Lecreulx, D. The Biosynthesis of Peptidoglycan Lipid-Linked Intermediates. FEMS Microbiol. Rev. 2008, 32, 208–233. DOI: 10.1111/j.1574-6976.2007.00089.x.
  • Al-Dabbagh, B.; Henry, X.; El Ghachi, M.; Auger, G.; Blanot, D.; Parquet, C.; Mengin-Lecreulx, D.; Bouhss, A. Active Site Mapping of MraY, a Member of the Polyprenyl-Phosphate N-Acetylhexosamine 1-Phosphate Transferase Superfamily, Catalyzing the First Membrane Step of Peptidoglycan Biosynthesis. Biochemistry 2008, 47, 8919–8928. DOI: 10.1021/bi8006274.
  • Kimura, K.; Bugg, T. D. H. Recent Advances in Antimicrobial Nucleoside Antibiotics Targeting Cell Wall Biosynthesis. Nat. Prod. Rep. 2003, 20, 252–273. DOI: 10.1039/b202149h.
  • Bugg, T.; Lloyd, A.; Roper, D. Phospho-MurNAc-Pentapeptide Translocase (MraY) as a Target for Antibacterial Agents and Antibacterial Proteins. Infect. Dis. Drug Targets 2006, 6, 85–106. DOI: 10.2174/187152606784112128.
  • Winn, M.; Goss, R. J. M.; Kimura, K.; Bugg, T. D. H. Antimicrobial Nucleoside Antibiotics Targeting Cell Wall Assembly: Recent Advances in Structure-Function Studies and Nucleoside Biosynthesis. Nat. Prod. Rep. 2010, 27, 279–304. DOI: 10.1039/B816215H.
  • Takatsuki, A.; Arima, K.; Tamura, G. Tunicamycin, a New Antibiotic. I. Isolation and characterization of tunicamycin. J. Antibiot. 1971, 24, 215–223. DOI: 10.7164/antibiotics.24.215.
  • Takatsuki, A.; Tamura, G. Tunicamycin, a New Antibiotic. II. J. Antibiot. 1971, 24, 224–231. DOI: 10.7164/antibiotics.24.224.
  • Takatsuki, A.; Tamura, G. Tunicamycin, a New Antibiotic. III. J. Antibiot. 1971, 24, 232–238. DOI: 10.7164/antibiotics.24.232.
  • Takatsuki, A.; Tamura, G. Effect of Tunicamycin on the Synthesis of Macromolecules in Cultures of Chick Embryo Fibroblasts Infected with New Castle Disease Virus. J. Antibiot. 1971, 24, 785–795. DOI: 10.7164/antibiotics.24.785.
  • Ito, T.; Kodama, Y.; Kawamura, K.; Suzuki, K.; Takatsuki, A.; Tamura, G. The Structure of Tunicaminyl Uracil, a Degradation Product of Tunicamycin. Agric. Biol. Chem. 1977, 41, 2303–2305. DOI: 10.1080/00021369.1977.10862855.
  • Takatsuki, A.; Kawamura, K.; Okina, M.; Kodama, Y.; Ito, T.; Tamura, G. The Structure of Tunicamycin. Agric. Biol. Chem. 1977, 41, 2307–2309. DOI: 10.1271/bbb1961.41.2307.
  • Ito, T.; Takatsuki, A.; Kawamura, K.; Sato, K.; Tamura, G. Isolation and Structures of Components 11 of Tunicamycin. Agric. Biol. Chem. 1980, 44, 695–698. DOI: 10.1080/00021369.1980.10864016.
  • Lehrman, M. A. Biosynthesis of N-acetylglucosamine-P-P-Dolichol, the Committed Step of Asparagine-Linked Oligosaccharide Assembly. Glycobiology 1991, 1, 553–562. DOI: 10.1093/glycob/1.6.553.
  • Yoo, J.; Mashalidis, E. H.; Kuk, A. C. Y.; Yamamoto, K.; Kaeser, B.; Ichikawa, S.; Lee, S. Y. GlcNAc-1-P-Transferase-Tunicamycin Complex Structure Reveals Basis for Inhibition of N-Glycosylation. Nat. Struct. Mol. Biol. 2018, 25, 217–224. DOI: 10.1038/s41594-018-0031-y.
  • Dong, Y. Y.; Wang, H.; Pike, A. C. W.; Cochrane, S. A.; Hamedzadeh, S.; Wyszyński, F. J.; Bushell, S. R.; Royer, S. F.; Widdick, D. A.; Sajid, A.; et al. Structures of DPAGT1 Explain Glycosylation Disease Mechanism and Advance TB Antibiotic Design. Cell 2018, 175, 1045–1058. DOI: 10.1016/j.cell.2018.10.037.
  • Hakulinen, J. K.; Hering, J.; Brändén, G.; Chen, H.; Snijder, A.; Ek, M.; Johansson, P. MraY-Antibiotic Complex Reveals Details of Tunicamycin Mode of Action. Nat. Chem. Biol. 2017, 13, 265–267. DOI: 10.1038/nchembio.2270.
  • Yamamoto, K.; Katsuyama, A.; Ichikawa, S. Structural Requirement of Tunicamycin V for MraY Inhibition. Bioorg. Med. Chem. 2019, 27, 1714–1719. DOI: 10.1016/j.bmc.2019.02.035.
  • Kinzy, W.; Schmidt, R. R. Glycosyl Imidates. 16. Synthesis of the Trisccharide of the Repeating Unit of the Capsular Polysaccharide of Neisseria meningitidis (Serogroup L). Liebigs Ann. Chem 1985, 8, 1537–1545.
  • Orgueira, H. A.; Bartolozzi, A.; Schell, P.; Litjens, R. E. J. N.; Palmacci, E. R.; Seeberger, P. H. Modular Synthesis of Heparin Oligosaccharides. Chem. Eur. J. 2003, 9, 140–169. DOI: 10.1002/chem.200390009.
  • Kinzy, W.; Schmidt, R. R. Glycosyl Imidates. 25. Muramic Acid as Glycosyl Donor and Glycosyl Acceptor. Leibigs Ann. Chem. 1987, 5, 407–415.
  • Nicolaou, K. C.; Nevalainen, M.; Zak, M.; Bulat, S.; Bella, M.; Safina, B. S. Synthetic Studies on Thiostrepton: Construction of Thiostrepton Analogues with the Thiazoline‐Containing Macrocycle. Angew. Chem. Int. Ed. 2003, 42, 3418–3424. DOI: 10.1002/anie.200351745.
  • Nicolaou, K. C.; Estrada, A. A.; Zak, M.; Lee, S. H.; Safina, B. S. A Mild and Selective Method for the Hydrolysis of Esters with Trimethyltin Hydroxide. Angew. Chem. Int. Ed. Engl. 2005, 44, 1378–1382. DOI: 10.1002/anie.200462207.
  • Kunishima, M.; Kawachi, C.; Iwasaki, F.; Terao, K.; Tani, S. Synthesis and Characterization of 4-(4,6-Dimethoxy-1,3,5-Triazin-2-yl)-4-Methylmorpholinium Chloride. Tetrahedron Lett. 1999, 40, 5327–5330. DOI: 10.1016/S0040-4039(99)00968-5.
  • Kunishima, M.; Kawachi, C.; Hioki, K.; Terao, K.; Tani, S. Formation of Carboxamides by Direct Condensation of Carboxylic Acids and Amines in Alcohols Using a New Alcohol- and Water-Soluble Condensing Agent: DMT-MM. Tetrahedron 2001, 57, 1551–1558. DOI: 10.1016/S0040-4020(00)01137-6.
  • Yamamoto, K.; Yakushiji, F.; Matsumaru, T.; Ichikawa, S. Total Synthesis of Tunicamycin V. Org. Lett. 2018, 20, 256–259. DOI: 10.1021/acs.orglett.7b03623.
  • Stachyra, T.; Dini, C.; Ferrari, P.; Bouhss, A.; van Heijenoort, J.; Mengin-Lecreulx, D.; Blanot, D.; Biton, J.; Le Beller, D. Fluorescence Detection-Based Functional Assay for High-Throughput Screening for MraY. Antimicrob. Agents Chemother. 2004, 48, 897–902. DOI: 10.1128/AAC.48.3.897-902.2004.
  • Guvench, O.; Weiser, J.; Shenkin, P. S.; Kolossváry, I.; Still, W. C. Application of the Frozen Atom Approximation to the GB/SA Continuum Model for Solvation Free Energy. J. Comput. Chem. 2002, 23, 214–221. DOI: 10.1002/jcc.1167.
  • Rice, L. B. Federal Funding for the Study of Antimicrobial Resistance in Nosocomial Pathogens: No ESKAPE. J. Infect. Dis. 2008, 197, 1079–1081. DOI: 10.1086/533452.
  • Pendleton, J. N.; Gorman, S. P.; Gilmore, B. F. Clinical Relevance of the ESKAPE Pathogens. Expert Rev Anti Infect Ther. 2013, 11, 297–308. DOI: 10.1586/eri.13.12.
  • Dabbagh, B. A.; Lecreulx, D. M.; Bouhss, A. Purification and Characterization of the Bacterial UDP-GlcNAc: undecaprenyl-Phosphate GlcNAc-1-Phosphate Transferase WecA. J. Bacteriol. 2008, 190, 7141–7146. DOI: 10.1128/JB.00676-08.
  • Soldo, B.; Lazarevic, V.; Karamata, D. tagO Is Involved in the Synthesis of All Anionic Cell-Wall Polymers in Bacillus subtilis 168. Microbiology (Reading, Engl.) 2002, 148, 2079–2087. DOI: 10.1099/00221287-148-7-2079.
  • Campbell, J.; Singh, A. K.; Santa Maria, J. P.; Kim, Y.; Brown, S.; Swoboda, J. G.; Mylonakis, E.; Wilkinson, B. J.; Walker, S. Synthetic Lethal Compound Combinations Reveal a Fundamental Connection between Wall Teichoic Acid and Peptidoglycan Biosynthesis in staphylococcus aureus. ACS Chem. Biol. 2011, 6, 106–116. DOI: 10.1021/cb100269f.
  • Price, N. P. J.; Momany, F. A. Modeling Bacterial UDP-HexNAc: polyprenol-P HexNAc-1-P Transferase. Glycobiology 2005, 15, 29R–42R. DOI: 10.1093/glycob/cwi065.
  • Chung, B. C.; Mashalidis, E. H.; Tanino, T.; Kim, M.; Matsuda, A.; Hong, J.; Ichikawa, S.; Lee, S. Y. Structural Insights into Inhibition of Lipid I Production in Bacterial Cell Wall Synthesis. Nature 2016, 533, 557–560. DOI: 10.1038/nature17636.
  • Chattopadhyay, A. K.; Ly, V. L.; Jakkepally, S.; Berger, G.; Hanessian, S. Total Synthesis of Isodaphlongamine H: A Possible Biogenetic Conundrum. Angew. Chem. Int. Ed. 2016, 55, 2577–2581. DOI: 10.1002/anie.201510861.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.