273
Views
6
CrossRef citations to date
0
Altmetric
Articles

Effect of modular conjugation strategy for N-acetylgalactosamine-targeted antisense oligonucleotides

, , , , , , & show all
Pages 109-118 | Received 30 Aug 2019, Accepted 01 Oct 2019, Published online: 16 Oct 2019

References

  • Crooke, S. T. Antisense Drug Technology: Principles, Strategies, and Applications, 2nd ed.; CRC Press: USA, 2007. https://www.crcpress.com/Antisense-Drug-Technology-Principles-Strategies-and-Applications-Second/Crooke/p/book/9780849387968
  • Yamamoto, T.; Nakatani, M.; Narukawa, K.; Obika, S. Antisense Drug Discovery and Development. Future Med. Chem. 2011, 3, 339–365. DOI: 10.4155/fmc.11.2.
  • Yamamoto, T.; Wada, F.; Harada-Shiba, M. Development of Antisense Drugs for Dyslipidemia. J. Atheroscler. Thromb. 2016, 23, 1011–1025. DOI: 10.5551/jat.RV16001.
  • Khvorova, A.; Watts, J. K. The Chemical Evolution of Oligonucleotide Therapies of Clinical Utility. Nat. Biotechnol. 2017, 35, 238–248. DOI: 10.1038/nbt.3765.
  • Wan, W. B.; Seth, P. P. The Medicinal Chemistry of Therapeutic Oligonucleotides. J. Med. Chem. 2016, 59, 9645–9667. DOI: 10.1021/acs.jmedchem.6b00551.
  • Shen, X.; Corey, D. R. Chemistry, Mechanism and Clinical Status of Antisense Oligonucleotides and Duplex RNAs. Nucleic Acids Res. 2018, 46, 1584–1600. DOI: 10.1093/nar/gkx1239.
  • Yamamoto, T.; Harada-Shiba, M.; Nakatani, M.; Wada, S.; Yasuhara, H.; Narukawa, K.; Sasaki, K.; Shibata, M.-A.; Torigoe, H.; Yamaoka, T.; et al. Cholesterol-Lowering Action of BNA-Based Antisense Oligonucleotides Targeting PCSK9 in Atherogenic Diet-Induced Hypercholesterolemic Mice. Mol. Ther. Nucleic Acids 2012, 1, e22. DOI: 10.1038/mtna.2012.16.
  • Hori, S.-I.; Mitsuoka, Y.; Kugimiya, A. RNA Reduction and Hepatotoxic Potential Caused by Non-Gapmer Antisense Oligonucleotides. Nucleic Acid Ther. 2018, 29, 44–50. DOI: 10.1089/nat.2018.0741.
  • Dieckmann, A.; Hagedorn, P. H.; Burki, Y.; Brugmann, C.; Berrera, M.; Ebeling, M.; Singer, T.; Schuler, F. A Sensitive in Vitro Approach to Assess the Hybridization-Dependent Toxic Potential of High Affinity Gapmer Oligonucleotides. Mol. Ther. Nucleic Acids 2018, 10, 45–54. DOI: 10.1016/j.omtn.2017.11.004.
  • Hagedorn, P. H.; Yakimov, V.; Ottosen, S.; Kammler, S.; Nielsen, N. F.; Høg, A. M.; Hedtjärn, M.; Meldgaard, M.; Møller, M. R.; Ørum, H.; et al. Hepatotoxic Potential of Therapeutic Oligonucleotides Can Be Predicted from Their Sequence and Modification Pattern. Nucleic Acid Ther. 2013, 23, 302–310. DOI: 10.1089/nat.2013.0436.
  • Seth, P. P.; Jazayeri, A.; Yu, J.; Allerson, C. R.; Bhat, B.; Swayze, E. E. Structure Activity Relationships of α-L-LNA Modified Phosphorothioate Gapmer Antisense Oligonucleotides in Animals. Mol. Ther. Nucleic Acids 2012, 1, e47. https://doi.org/https://doi.org/10.1038/mtna.2012.34. DOI: 10.1038/mtna.2012.34.
  • Burdick, A. D.; Sciabola, S.; Mantena, S. R.; Hollingshead, B. D.; Stanton, R.; Warneke, J. A.; Zeng, M.; Martsen, E.; Medvedev, A.; Makarov, S. S.; et al. Sequence Motifs Associated with Hepatotoxicity of Locked Nucleic Acid—Modified Antisense Oligonucleotides. Nucleic Acids Res. 2014, 42, 4882–4891. DOI: 10.1093/nar/gku142.
  • Stanton, R.; Sciabola, S.; Salatto, C.; Weng, Y.; Moshinsky, D.; Little, J.; Walters, E.; Kreeger, J.; DiMattia, D.; Chen, T.; et al. Chemical Modification Study of Antisense Gapmers. Nucleic Acid Ther. 2012, 22, 344–359. DOI: 10.1089/nat.2012.0366.
  • Kasuya, T.; Hori, S.-I.; Watanabe, A.; Nakajima, M.; Gahara, Y.; Rokushima, M.; Yanagimoto, T.; Kugimiya, A. Ribonuclease H1-Dependent Hepatotoxicity Caused by Locked Nucleic Acid-Modified Gapmer Antisense Oligonucleotides. Sci. Rep. 2016, 6, 30377. DOI: 10.1038/srep30377.
  • van Meer, L.; van Dongen, M.; Moerland, M.; de Kam, M.; Cohen, A.; Burggraaf, J. Novel SGLT2 Inhibitor: First-in-Man Studies of Antisense Compound Is Associated with Unexpected Renal Effects. Pharmacol. Res. Perspect. 2017, 5, e00292. DOI: 10.1002/prp2.292.
  • van Meer, L.; Moerland, M.; van Dongen, M.; Goulouze, B.; de Kam, M.; Klaassen, E.; Cohen, A.; Burggraaf, J. Renal Effects of Antisense-Mediated Inhibition of SGLT2. J. Pharmacol. Exp. Ther. 2016, 359, 280–289. DOI: 10.1124/jpet.116.233809.
  • van Poelgeest, E. P.; Hodges, M. R.; Moerland, M.; Tessier, Y.; Levin, A. A.; Persson, R.; Lindholm, M. W.; Dumong Erichsen, K.; Ørum, H.; Cohen, A. F.; et al. Antisense-Mediated Reduction of Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9): A First-in-Human Randomized, Placebo-Controlled Trial. Br. J. Clin. Pharmacol. 2015, 80, 1350–1361. DOI: 10.1111/bcp.12738.
  • Srinivasarao, M.; Low, P. S. Ligand-Targeted Drug Delivery. Chem. Rev. 2017, 117, 12133–12164. DOI: 10.1021/acs.chemrev.7b00013.
  • Ashwell, G.; Morell, A. G. The Role of Surface Carbohydrates in the Hepatic Recognition and Transport of Circulating Glycoproteins. Adv. Enzymol. Relat. Areas Mol. Biol. 1974, 41, 99–128.
  • Drickamer, K.; Taylor, M. E. Biology of Animal Lectins. Annu. Rev. Cell Biol. 1993, 9, 237–264. DOI: 10.1146/annurev.cb.09.110193.001321.
  • Lee, Y. C.; Townsend, R. R.; Hardy, M. R.; Lonngren, J.; Arnarp, J.; Haraldsson, M.; Lonn, H.; Lönngren, J.; Arnarp, J.; Haraldsson, M.; et al. Binding of Synthetic Oligosaccharides to the Hepatic Gal/GalNAc Lectin. Dependence on Fine Structural Features. J. Biol. Chem. 1983, 258, 199–202.
  • Stockert, R. J. The Asialoglycoprotein Receptor: Relationships between Structure, Function, and Expression. Physiol. Rev. 1995, 75, 591–609. DOI: 10.1152/physrev.1995.75.3.591.
  • Steirer, L. M.; Park, E. I.; Townsend, R. R.; Baenziger, J. U. The Asialoglycoprotein Receptor Regulates Levels of Plasma Glycoproteins Terminating with Sialic Acid Alpha2,6-Galactose. J. Biol. Chem. 2009, 284, 3777–3783. DOI: 10.1074/jbc.M808689200.
  • Dowdy, S. F. Overcoming Cellular Barriers for RNA Therapeutics. Nat. Biotechnol. 2017, 35, 222–229. DOI: 10.1038/nbt.3802.
  • Prakash, T. P.; Graham, M. J.; Yu, J.; Carty, R.; Low, A.; Chappell, A.; Schmidt, K.; Zhao, C.; Aghajan, M.; Murray, H. F.; et al. Targeted Delivery of Antisense Oligonucleotides to Hepatocytes Using Triantennary N-Acetyl Galactosamine Improves Potency 10-Fold in Mice. Nucleic Acids Res. 2014, 42, 8796–8807. DOI: 10.1093/nar/gku531.
  • Østergaard, M. E.; Yu, J.; Kinberger, G. A.; Wan, W. B.; Migawa, M. T.; Vasquez, G.; Schmidt, K.; Gaus, H. J.; Murray, H. M.; Low, A.; et al. Efficient Synthesis and Biological Evaluation of 5′-GalNAc Conjugated Antisense Oligonucleotides. Bioconjugate Chem. 2015, 26, 1451–1455. DOI: 10.1021/acs.bioconjchem.5b00265.
  • Huang, Y. Preclinical and Clinical Advances of GalNAc-Decorated Nucleic Acid Therapeutics. Mol. Ther. Nucleic Acids 2017, 6, 116–132. DOI: 10.1016/j.omtn.2016.12.003.
  • Miller, C. M.; Tanowitz, M.; Donner, A. J.; Prakash, T. P.; Swayze, E. E.; Harris, E. N.; Seth, P. P. Receptor-Mediated Uptake of Phosphorothioate Antisense Oligonucleotides in Different Cell Types of the Liver. Nucleic Acid Ther. 2018, 28, 119–127. DOI: 10.1089/nat.2017.0709.
  • Yamamoto, T.; Sawamura, M.; Wada, F.; Harada-Shiba, M.; Obika, S. Serial Incorporation of a Monovalent GalNAc Phosphoramidite Unit into Hepatocyte-Targeting Antisense Oligonucleotides. Bioorganic Med. Chem. 2016, 24, 26–32. DOI: 10.1016/j.bmc.2015.11.036.
  • Khorev, O.; Stokmaier, D.; Schwardt, O.; Cutting, B.; Ernst, B. Trivalent, Gal/GalNAc-Containing Ligands Designed for the Asialoglycoprotein Receptor. Bioorganic Med. Chem. 2008, 16, 5216–5231. DOI: 10.1016/j.bmc.2008.03.017.
  • Wada, F.; Yamamoto, T.; Ueda, T.; Sawamura, M.; Wada, S.; Harada-Shiba, M.; Obika, S. Cholesterol-GalNAc Dual Conjugation Strategy for Reducing Renal Distribution of Antisense Oligonucleotides. Nucleic Acid Ther. 2018, 28, 50–57. DOI: 10.1089/nat.2017.0698.
  • Yamamoto, T.; Terada, C.; Kashiwada, K.; Yamayoshi, A.; Harada-Shiba, M.; Obika, S. Synthesis of Monovalent N-Acetylgalactosamine Phosphoramidite for Liver-Targeting Oligonucleotides. Curr. Protoc. Nucleic Acid Chem. 2019, 78, e99. DOI: 10.1002/cpnc.99.
  • Schmidt, K.; Prakash, T. P.; Donner, A. J.; Kinberger, G. A.; Gaus, H. J.; Low, A.; Østergaard, M. E.; Bell, M.; Swayze, E. E.; Seth, P. P. Characterizing the Effect of GalNAc and Phosphorothioate Backbone on Binding of Antisense Oligonucleotides to the Asialoglycoprotein Receptor. Nucleic Acids Res. 2017, 45, 2294–2306. DOI: 10.1093/nar/gkx060.
  • Shemesh, C. S.; Yu, R. Z.; Gaus, H. J.; Greenlee, S.; Post, N.; Schmidt, K.; Migawa, M. T.; Seth, P. P.; Zanardi, T. A.; Prakash, T. P.; et al. Elucidation of the Biotransformation Pathways of a Galnac3-Conjugated Antisense Oligonucleotide in Rats and Monkeys. Mol. Ther. Nucleic Acids 2016, 5, e319. DOI: 10.1038/mtna.2016.31.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.