144
Views
5
CrossRef citations to date
0
Altmetric
Articles

Polyethylene glycol molecular crowders enhance the catalytic ability of bimolecular bacterial RNase P ribozymes

, , &
Pages 715-729 | Received 05 Jul 2019, Accepted 28 Oct 2019, Published online: 10 Feb 2020

References

  • Kuznetsova, I. M.; Turoverov, K. K.; Uversky, V. N. What Macromolecular Crowding Can Do to a Protein. Int. J. Mol. Sci. 2014, 15, 23090–23140. DOI: 10.3390/ijms151223090.
  • Mittal, S.; Chowhan, R. K.; Singh, L. R. Macromolecular Crowding: macromolecules Friend or Foe. Biochim. Biophys. Acta 2015, 1850, 1822–1831. DOI: 10.1016/j.bbagen.2015.05.002.
  • Teraoka, H.; Tsukada, K. Influence of Polyethylene Glycol on the Ligation Reaction with Calf Thymus DNA Ligases I and II. J. Biochem. 1987, 101, 225–231. DOI: 10.1093/oxfordjournals.jbchem.a121895.
  • Wu, Q.; Huang, L.; Zhang, Y. The Structure and Function of Catalytic RNAs. Sci. China, C, Life Sci. 2009, 52, 232–244. DOI: 10.1007/s11427-009-0038-z.
  • Lilley, D. M. J.; Eckstein, F. Ribozymes and RNA Catalysis; RSC Publishing: Cambridge, 2007.
  • Lee, K. Y.; Lee, B. J. Structural and Biochemical Properties of Novel Self-Cleaving Ribozymes. Molecules 2017, 22, E678. DOI: 10.3390/molecules22040678.
  • Hervé, G.; Tobé, S.; Heams, T.; Vergne, J.; Maurel, M. C. Hydrostatic and Osmotic Pressure Study of the Hairpin Ribozyme. Biochim. Biophys. Acta 2006, 1764, 573–577. DOI: 10.1016/j.bbapap.2006.01.020.
  • Nakano, S.; Karimata, H. T.; Kitagawa, Y.; Sugimoto, N. Facilitation of RNA Enzyme Activity in the Molecular Crowding Media of Cosolutes. J. Am. Chem. Soc. 2009, 131, 16881–16888. DOI: 10.1021/ja9066628.
  • Strulson, C. A.; Yennawar, N. H.; Rambo, R. P.; Bevilacqua, P. C. Molecular Crowding Favors Reactivity of a Human Ribozyme under Physiological Ionic Conditions. Biochemistry 2013, 52, 8187–8197. DOI: 10.1021/bi400816s.
  • Desai, R.; Kilburn, D.; Lee, H. T.; Woodson, S. A. Increased Ribozyme Activity in Crowded Solutions. J. Biol. Chem. 2014, 289, 2972–2977. DOI: 10.1074/jbc.M113.527861.
  • Cate, J. H.; Gooding, A. R.; Podell, E.; Zhou, K.; Golden, B. L.; Kundrot, C. E.; Cech, T. R.; Doudna, J. A. Crystal Structure of a Group I Ribozyme Domain: principles of RNA Packing. Science 1996, 273, 1678–1685. DOI: 10.1126/science.273.5282.1678.
  • Krasilnikov, A. S.; Yang, X.; Pan, T.; Mondragón, A. Crystal Structure of the Specificity Domain of Ribonuclease P. Nature 2003, 421, 760–764. DOI: 10.1038/nature01386.
  • Krasilnikov, A. S.; Xiao, Y.; Pan, T.; Mondragón, A. Basis for Structural Diversity in Homologous RNAs. Science 2004, 306, 104–107. DOI: 10.1126/science.1101489.
  • van der Horst, G.; Christian, A.; Inoue, T. Reconstitution of a Group I Intron Self-Splicing Reaction with an Activator RNA. Proc. Natl. Acad. Sci. USA 1991, 88, 184–188. DOI: 10.1073/pnas.88.1.184.
  • Doudna, J. A.; Cech, T. R. Self-Assembly of a Group I Intron Active Site from Its Component Tertiary Structural Domains. RNA 1995, 1, 36–45.
  • Ikawa, Y.; Shiraishi, H.; Inoue, T. Trans-Activation of the Tetrahymena Ribozyme by Its P2-2.1 Domains. J. Biochem. 1998, 123, 528–533. DOI: 10.1093/oxfordjournals.jbchem.a021968.
  • Pan, T. Higher Order Folding and Domain Analysis of the Ribozyme from Bacillus subtilis Ribonuclease P. Biochemistry 1995, 34, 902–909. DOI: 10.1021/bi00003a024.
  • Loria, A.; Pan, T. Domain Structure of the Ribozyme from Eubacterial Ribonuclease P. RNA 1996, 2, 551–563.
  • Evans, D.; Marquez, S. M.; Pace, N. R. RNase P: Interface of the RNA and Protein Worlds. Trends Biochem. Sci. 2006, 31, 333–341. DOI: 10.1016/j.tibs.2006.04.007.
  • Torres-Larios, A.; Swinger, K. K.; Pan, T.; Mondragón, A. Structure of Ribonuclease P - A Universal Ribozyme. Curr. Opin. Struct. Biol. 2006, 16, 327–335. DOI: 10.1016/j.sbi.2006.04.002.
  • Mondragón, A. Structural Studies of RNase P. Annu. Rev. Biophys. 2013, 42, 537–557. DOI: 10.1146/annurev-biophys-083012-130406.
  • Nozawa, Y.; Hagihara, M.; Matsumura, S.; Ikawa, Y. Modular Architecture of Bacterial RNase P Ribozymes as a Structural Platform for RNA Nanostructure Design. Chimia (Aarau) 2018, 72, 882–887. DOI: 10.2533/chimia.2018.882.
  • Nishito, Y.; Osana, Y.; Hachiya, T.; Popendorf, K.; Toyoda, A.; Fujiyama, A.; Itaya, M.; Sakakibara, Y. Whole Genome Assembly of a Natto Production Strain Bacillus subtilis Natto from Very Short Read Data. BMC Genomics 2010, 11, 243. DOI: 10.1186/1471-2164-11-243.
  • Ando, T.; Tanaka, T.; Hori, Y.; Sakai, E.; Kikuchi, Y. Human Tyrosine tRNA Is Also Internally Cleavable by E. coli Ribonuclease P RNA Ribozyme in Vitro. Biosci. Biotechnol. Biochem. 2001, 65, 2798–2801. DOI: 10.1271/bbb.65.2798.
  • Ikawa, Y.; Moriyama, S.; Furuta, H. Facile Syntheses of BODIPY Derivatives for Fluorescent Labeling of the 3' and 5' Ends of RNAs. Anal. Biochem. 2008, 378, 166–170. DOI: 10.1016/j.ab.2008.03.054.
  • Walczyk, D.; Willkomm, D. K.; Hartmann, R. K. Bacterial Type B RNase P: functional Characterization of the L5.1-L15.1 Tertiary Contact and Antisense Inhibition. RNA 2016, 22, 1699–1709. DOI: 10.1261/rna.057422.116.
  • Guerrier-Takada, C.; Haydock, K.; Allen, L.; Altman, S. Metal Ion Requirements and Other Aspects of the Reaction Catalyzed by M1 RNA, the RNA Subunit of Ribonuclease P from Escherichia coli. Biochemistry 1986, 25, 1509–1515. DOI: 10.1021/bi00355a006.
  • Kazantsev, A. V.; Pace, N. R. Bacterial RNase P: A New View of an Ancient Enzyme. Nat. Rev. Microbiol. 2006, 4, 729–740. DOI: 10.1038/nrmicro1491.
  • Qin, H.; Sosnick, T. R.; Pan, T. Modular Construction of a Tertiary RNA Structure: The Specificity Domain of the Bacillus subtilis RNase P RNA. Biochemistry 2001, 40, 11202–11210. DOI: 10.1021/bi010076n.
  • Tanaka, T.; Furuta, H.; Ikawa, Y. Installation of Orthogonality to the Interface That Assembles Two Modular Domains in the Tetrahymena Group I Ribozyme. J. Biosci. Bioeng. 2014, 117, 407–412. DOI: 10.1016/j.jbiosc.2013.10.008.
  • Marszalkowski, M.; Willkomm, D. K.; Hartmann, R. K. Structural Basis of a Ribozyme’s Thermostability: P1-L9 Interdomain Interaction in RNase P RNA. RNA 2007, 14, 127–133. DOI: 10.1261/rna.762508.
  • Oi, H.; Fujita, D.; Suzuki, Y.; Sugiyama, H.; Endo, M.; Matsumura, S.; Ikawa, Y. Programmable Formation of Catalytic RNA Triangles and Squares by Assembling Modular RNA Enzymes. J. Biochem. 2017, 161, 451–462. DOI: 10.1093/jb/mvw093.
  • Tsuruga, R.; Uehara, N.; Suzuki, Y.; Furuta, H.; Sugiyama, H.; Endo, M.; Matsumura, S.; Ikawa, Y. Oligomerization of a Modular Ribozyme Assembly of Which Is Controlled by a Programmable RNA-RNA Interface between Two Structural Modules. J. Biosci. Bioeng. 2019, 128, 410–415. DOI: 10.1016/j.jbiosc.2019.04.003.
  • Higgs, P. G.; Lehman, N. The RNA World: Molecular Cooperation at the Origins of Life. Nat. Rev. Genet. 2015, 16, 7–17. DOI: 10.1038/nrg3841.
  • Joyce, G. F.; Szostak, J. W. Protocells and RNA Self-Replication. Cold Spring Harb. Perspect. Biol. 2018, 10, a034801. DOI: 10.1101/cshperspect.a034801.
  • Gillams, R. J.; Jia, T. Z. Mineral Surface-Templated Self-Assembling Systems: Case Studies from Nanoscience and Surface Science towards Origins of Life Research. Life 2018, 8, 10. DOI: 10.3390/life8020010.
  • Rahman, M. M.; Matsumura, S.; Ikawa, Y. Oligomerization of a Bimolecular Ribozyme Modestly Rescues Its Structural Defects that Disturb Interdomain Assembly to Form the Catalytic site. J. Mol. Evol. 2018, 86, 431–442. DOI: 10.1007/s00239-018-9862-8.
  • Saha, R.; Pohorille, A.; Chen, I. A. Molecular Crowding and Early Evolution. Orig. Life Evol. Biosph. 2014, 44, 319–324. DOI: 10.1007/s11084-014-9392-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.