292
Views
2
CrossRef citations to date
0
Altmetric
Conference Proceedings

Xanthine oxidoreductase knockout mice with high HPRT activity were not rescued by NAD+ replenishment

ORCID Icon, , &
Pages 1465-1473 | Received 16 Dec 2019, Accepted 28 Jan 2020, Published online: 04 Mar 2020

References

  • Wu, X.; Wakamiya, M.; Vaishnav, S.; Geske, R.; Montgomery, C.; Jones, P.; Bradley, A.; Caskey, C. T. Hyperuricemia and Urate Nephropathy in Urate Oxidase-Deficient Mice. Proc. Natl. Acad. Sci. USA 1994, 91, 742–746. DOI: 10.1073/pnas.91.2.742.
  • Ohtsubo, T.; Rovira, I. I.; Starost, M. F.; Liu, C.; Finkel, T. Xanthine Oxidoreductase is an Endogenous Regulator of Cyclooxygenase-2. Circ. Res. 2004, 95, 1118–1124. DOI: 10.1161/01.RES.0000149571.96304.36.
  • Wu, C. L.; Melton, D. W. Production of a Model for Lesch-Nyhan Syndrome in Hypoxanthine Phosphoribosyltransferase-Deficient Mice. Nat. Genet. 1993, 3, 235–240. DOI: 10.1038/ng0393-235.
  • Hosoyamada, M.; Tsurumi, Y.; Hirano, H.; Tomioka, N. H.; Sekine, Y.; Morisaki, T.; Uchida, S. Urat1-Uox Double Knockout Mice Are Experimental Animal Models of Renal Hypouricemia and Exercise-Induced Acute Kidney Injury. Nucleosides Nucleotides Nucleic Acids 2016, 35, 543–549. DOI: 10.1080/15257770.2016.1143559.
  • Tax, W. J.; Veerkamp, J. H.; Trijbels, J. M. Activity of Purine Phosphoribosyltransferases and of Two Enzymes of Pyrimidine Biosynthesis in Erythrocytes of Ten Mammalian Species. Comp. Biochem. Physiol. B 1976, 54, 209–212. DOI: 10.1016/0305-0491(76)90144-9.
  • Xu, P.; LaVallee, P.; Hoidal, J. R. Repressed Expression of the Human Xanthine Oxidoreductase Gene. E-Box and TATA-like Elements Restrict Ground State Transcriptional Activity. J. Biol. Chem. 2000, 275, 5918–5926. DOI: 10.1074/jbc.275.8.5918.
  • Takada, T.; Mita, A.; Maeno, A.; Sakai, T.; Shitara, H.; Kikkawa, Y.; Moriwaki, K.; Yonekawa, H.; Shiroishi, T. Mouse Inter-Subspecific Consomic Strains for Genetic Dissection of Quantitative Complex Traits. Genome Res. 2008, 18, 500–508. DOI: 10.1101/gr.7175308.
  • Hosoyamada, M.; Takiue, Y.; Morisaki, H.; Cheng, J.; Ikawa, M.; Okabe, M.; Morisaki, T.; Ichida, K.; Hosoya, T.; Shibasaki, T.; et al. Establishment and Analysis of SLC22A12 (URAT1) Knockout Mouse. Nucleosides Nucleotides Nucleic Acids 2010, 29, 314–320. DOI: 10.1080/15257771003738634.
  • Preiss, J.; Handler, P. Enzymatic Synthesis of Nicotinamide Mononucleotide. J. Biol. Chem. 1957, 225, 759–770.
  • Griffith, D. A.; Jarvis, S. M. Characterization of a Sodium-Dependent Concentrative Nucleobase-Transport System in guinea-Pig Kidney Cortex Brush-Border Membrane Vesicles. Biochem. J. 1994, 303, 901–905. DOI: 10.1042/bj3030901.
  • Perico, L.; Benigni, A. The iNADequacy of Renal Cell Metabolism: modulating NAD(+) Biosynthetic Pathways to Forestall Kidney Diseases. Kidney Int. 2019, 96, 264–267. DOI: 10.1016/j.kint.2019.03.012.
  • Yamamoto, S.; Inoue, K.; Murata, T.; Kamigaso, S.; Yasujima, T.; Maeda, J-y.; Yoshida, Y.; Ohta, K-y.; Yuasa, H. Identification and Functional Characterization of the First Nucleobase Transporter in Mammals: implication in the Species Difference in the Intestinal Absorption Mechanism of Nucleobases and Their Analogs between Higher Primates and Other Mammals. J. Biol. Chem. 2010, 285, 6522–6531. DOI: 10.1074/jbc.M109.032961.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.