265
Views
4
CrossRef citations to date
0
Altmetric
Articles

Multispectroscopic and molecular docking studies on DNA binding of guaifenesin drug

&
Pages 317-335 | Received 24 Feb 2020, Accepted 04 Jan 2021, Published online: 19 Jan 2021

References

  • Zeman, M. K.; Cimprich, K. A. Causes and Consequences of Replication Stress. Nat. Cell. Biol. 2014, 16, 2–9. DOI: 10.1038/ncb2897.
  • Lee, T. I.; Young, R. A. Transcriptional Regulation and Its Misregulation in Disease. Cell 2013, 152, 1237–1251. DOI: 10.1016/j.cell.2013.02.014.
  • Wang, P.; Zhou, Y.; Ouyang, H.; Wang, L.; Fu, Z. A Protocol for Studying the Interaction between Small-Molecular Drug and DNA Using Microdialysis Sampling Integrated with Chemiluminescent Detection. J. Pharm. Biomed. Anal. 2018, 150, 294–299. DOI: 10.1016/j.jpba.2017.12.013.
  • Afrin, S.; Rahman, Y.; Sarwar, T.; Husain, M. A.; Ali, A.; Tabish, M. Molecular spectroscopic and thermodynamic studies on the interaction of anti-platelet drug ticlopidine with calf thymus DNA. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2017, 186, 66–75. DOI: 10.1016/j.saa.2017.05.073.
  • Hasanzadeh, M.; Shadjou, N. Pharmacogenomic Study Using Bio- and Nanobioelectrochemistry: Drug-DNA Interaction. Mater. Sci. Eng. C: Mater. Biol. Appl. 2016, 61, 1002–1017. DOI: 10.1016/j.msec.2015.12.020.
  • Muti, M.; Muti, M. Electrochemical Monitoring of the Interaction between Anticancer Drug and DNA in the Presence of Antioxidant. Talanta 2018, 178, 1033–1039. DOI: 10.1016/j.talanta.2017.08.089.
  • Mukherjee, A.; Singh, B. Binding Interaction of Pharmaceutical Drug Captopril with Calf Thymus DNA: A Multispectroscopic and Molecular Docking Study. J. Lumin. 2017, 190, 319–327. DOI: 10.1016/j.jlumin.2017.05.068.
  • Jalali, F.; Dorraji, P. S. Interaction of Anthelmintic Drug (Thiabendazole) with DNA: Spectroscopic and Molecular Modeling Studies. Arabian J. Chem. 2017, 10, S3947–S3954. DOI: 10.1016/j.arabjc.2014.06.001.
  • Gibson, D. Drug–DNA Interactions and Novel Drug Design. Nature Publishing Group: 2002. 2, 275–276.
  • Gurova, K. New Hopes from Old Drugs: Revisiting DNA-Binding Small Molecules as Anticancer Agents. Future Oncol. 2009, 5, 1685–1704. DOI: 10.2217/fon.09.127.
  • Yang, F.; Wang, J.; Liu, C.; Xiaochen, X.; Wenjun, L.; Xia, Z.; Xiao, J. Pb2+, Cu2+, Zn2+, Mg2+ and Mn2+ Reduce the Affinities of Flavone, Genistein and Kaempferol for Human Serum Albumin In Vitro. Arch. Biol. Sci. (Beogr) 2011, 63, 623–634. DOI: 10.2298/ABS1103623Y.
  • Mothes, E.; Faller, P. Evidence That the Principal CoII-Binding Site in Human Serum Albumin is Not at the N-Terminus: Implication on the Albumin Cobalt Binding Test for Detecting Myocardial Ischemia. Biochemistry 2007, 46, 2267–2274. DOI: 10.1021/bi061783p.
  • Kandagal, P.; Ashoka, S.; Seetharamappa, J.; Shaikh, S.; Jadegoud, Y.; Ijare, O. Study of the Interaction of an Anticancer Drug with Human and Bovine Serum Albumin: Spectroscopic Approach. J. Pharm. Biomed. Anal. 2006, 41, 393–399. DOI: 10.1016/j.jpba.2005.11.037.
  • Yuan, X-Y.; Qin, J.; Lu, L.-L. Influence of Metal Ions on the Interaction between Gatifloxacin and Calf Thymus DNA. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2010, 75, 520–524. DOI: 10.1016/j.saa.2009.11.001.
  • Zhang, G.; Zhang, Y.; Zhang, Y.; Li, Y. Spectroscopic Studies of Cyanazine Binding to Calf Thymus DNA with the Use of Ethidium Bromide as a Probe. Sens. Actuators B. 2013, 182, 453–460. DOI: 10.1016/j.snb.2013.03.038.
  • Chi, Z.; Liu, R.; Pan, X.; Teng, Y.; Qin, H.; Zhu, J.; Hao, X. Investigation on the Toxic Interaction of Chrysoidine hydrochloride-CTMAB Combined Contamination with Calf Thymus DNA. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2010, 75, 177–182. DOI: 10.1016/j.saa.2009.10.009.
  • Sirajuddin, M.; Ali, S.; Badshah, A. Drug-DNA Interactions and Their Study by UV-Visible, Fluorescence Spectroscopies and Cyclic Voltametry. J. Photochem. Photobiol. B. 2013, 124, 1–19. DOI: 10.1016/j.jphotobiol.2013.03.013.
  • Rehman, S. U.; Sarwar, T.; Husain, M. A.; Ishqi, H. M.; Tabish, M. Studying Non-Covalent Drug-DNA Interactions. Arch. Biochem. Biophys. 2015, 576, 49–60. DOI: 10.1016/j.abb.2015.03.024.
  • Shi, J.-H.; Zhou, K.-L.; Lou, Y.-Y.; Pan, D.-Q. Multi-Spectroscopic and Molecular Docking Studies on the Interaction of Darunavir, a HIV Protease Inhibitor with Calf Thymus DNA. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2018, 193, 14–22. DOI: 10.1016/j.saa.2017.11.061.
  • Shi, J.-H.; Lou, Y.-Y.; Zhou, K.-L.; Pan, D.-Q. Exploration of Intermolecular Interaction of Calf Thymus DNA with Sulfosulfuron Using Multi-Spectroscopic and Molecular Docking Techniques. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2018, 204, 209–216. DOI: 10.1016/j.saa.2018.06.054.
  • Khajeh, M. A.; Dehghan, G.; Dastmalchi, S.; Shaghaghi, M.; Iranshahi, M. Spectroscopic Profiling and Computational Study of the Binding of Tschimgine: A Natural Monoterpene Derivative, with Calf Thymus DNA. Spectrochim. Acta Part A. 2018, 192, 384–392. DOI: 10.1016/j.saa.2017.11.042.
  • Shahabadi, N.; Falsafi, M.; Maghsudi, M. DNA-Binding Study of Anticancer Drug Cytarabine by Spectroscopic and Molecular Docking Techniques. Nucleosides Nucleotides Nucleic Acids. 2017, 36, 49–65. DOI: 10.1080/15257770.2016.1218021.
  • Arjmand, F.; Sayeed, F. Synthesis, Characterization and DNA-Binding Studies of Mono and Heterobimetallic Complexes CuSn2/ZnSn2 and Their DNA Cleavage Activity. J. Mol. Struct. 2010, 965, 14–22. DOI: 10.1016/j.molstruc.2009.11.025.
  • Williams, A. K.; Dasilva, S. C.; Bhatta, A.; Rawal, B.; Liu, M.; Korobkova, E. A. Determination of the Drug-DNA Binding Modes Using Fluorescence-Based Assays. Anal. Biochem. 2012, 422, 66–73. DOI: 10.1016/j.ab.2011.12.041.
  • Shahabadi, N.; Hadidi, S.; Shiri, F. J. Biomol. Struct. Dyn. 2020, 38, 283–294.
  • Shahabadi, N.; Shiri, F.; Hadidi, S. The Effect of Dimerization on the Interaction of Ibuprofen Drug with Calf Thymus DNA: Molecularmodeling and Spectroscopic Investigation. Nucleosides Nucleotides Nucleic Acids. 2018, 37, 147–168. DOI: 10.1080/15257770.2018.1438617.
  • Shahabadi, N.; Shiri, F. Multispectroscopic Studies on the Interaction of a Copper(ii) Complex of Ibuprofen Drug with Calf Thymus DNA. Nucleosides Nucleotides Nucleic Acids. 2017, 36, 83–106. DOI: 10.1080/15257770.2016.1223305.
  • Shahabadi, N.; Shiri, F.; Norouzibazaz, M.; Falah, A. Disquisition on the Interaction of ibuprofen-Zn(II) Complex with Calf Thymus DNA by Spectroscopic Techniques and the Use of Hoechst 33258 and Methylene Blue Dyes as Spectral Probes. Nucleosides Nucleotides Nucleic Acids. 2018, 37, 125–146. DOI: 10.1080/15257770.2017.1400048.
  • Usman, A.; Ahmad, M. Binding of Bisphenol-F, a Bisphenol Analogue, to Calf Thymus DNA by Multi-Spectroscopic and Molecular Docking Studies. Chemosphere 2017, 181, 536–543. DOI: 10.1016/j.chemosphere.2017.04.115.
  • Liu, H.-K.; Sadler, P. J. Metal Complexes as DNA Intercalators. Acc. Chem. Res. 2011, 44, 349–359. DOI: 10.1021/ar100140e.
  • Wang, M.; Yu, Y.; Liang, C.; Lu, A.; Zhang, G. Recent Advances in Developing Small Molecules Targeting Nucleic Acid. Int. J. Mol. Sci. 2016, 17, 779. DOI: 10.3390/ijms17060779.
  • Suckling, C. J. Minor Groove Binders 1998–2004. Exp. Opin. Ther. Pat. 2004, 14, 1693–1724. DOI: 10.1517/13543776.14.12.1693.
  • Rehman, S. U.; Sarwar, T.; Ishqi, H. M.; Husain, M. A.; Hasan, Z.; Tabish, M. Deciphering the Interactions between Chlorambucil and Calf Thymus DNA: A Multi-Spectroscopic and Molecular Docking Study. Arch. Biochem. Biophys. 2015, 566, 7–14. DOI: 10.1016/j.abb.2014.12.013.
  • Yang, C. Y.; Srdanov, V.; Robinson, M. R.; Bazan, G. C.; Heeger, A. J. Orienting Eu(Dnm)3phen by Tensile Drawing in Polyethylene: Polarized Eu3+ Emission. Adv. Mater. 2002, 14, 980–983. DOI: 10.1002/1521-4095(20020705)14:13/14<980::AID-ADMA980>3.0.CO;2-T.
  • Kumar, C.; Asuncion, E. H. DNA Binding Studies and Site Selective Fluorescence Sensitization of an Anthryl Probe. J. Am. Chem. Soc. 1993, 115, 8547–8553. DOI: 10.1021/ja00072a004.
  • Shi, J.-H.; Wang, Q.; Pan, D.-Q.; Liu, T.-T.; Jiang, M. Characterization of Interactions of Simvastatin, Pravastatin, Fluvastatin, and Pitavastatin with Bovine Serum Albumin: Multiple Spectroscopic and Molecular Docking. J. Biomol. Struct. Dyn. 2017, 35, 1529–1546. DOI: 10.1080/07391102.2016.1188416.
  • Shi, J-h.; Pan, D-q.; Jiang, M.; Liu, T.-T.; Wang, Q. In Vitro Study on Binding Interaction of Quinapril with Bovine Serum Albumin (BSA) Using Multi-Spectroscopic and Molecular Docking Methods. J. Biomol. Struct. Dyn. 2017, 35, 2211–2223. DOI: 10.1080/07391102.2016.1213663.
  • Ali, M. S.; Farah, M. A.; Al-Lohedan, H. A.; Al-Anazi, K. M. J. R. Comprehensive exploration of the anticancer activities of procaine and its binding with calf thymus DNA: a multi spectroscopic and molecular modelling study. 2018, 8, 9083–9093.
  • Zhang, Y.-F.; Zhou, K.-L.; Lou, Y.-Y.; Pan, D-q.; Shi, J.-H. Investigation of the Binding Interaction between Estazolam and Bovine Serum Albumin: Multi-Spectroscopic Methods and Molecular Docking Technique. J. Biomol. Struct. Dyn. 2017, 35, 3605–3614. DOI: 10.1080/07391102.2016.1264889.
  • Sun, Y.; Bi, S.; Song, D.; Qiao, C.; Mu, D.; Zhang, H. Study on the Interaction Mechanism between DNA and the Main Active Components in Scutellaria Baicalensis Georgi. Sens. Actuators B: Chem. 2008, 129, 799–810. DOI: 10.1016/j.snb.2007.09.082.
  • Lakowicz, J. R. Protein Fluorescence. In Principles of Fluorescence Spectroscopy, Springer, 1983; pp 341–381.
  • Grigoryan, K.; Ghazaryan, A. Chem. Biol. 2013, 2, 6–10.
  • Rasoulzadeh, F.; Asgari, D.; Naseri, A.; Rashidi, M. R. Spectroscopic Studies on the Interaction between Erlotinib Hydrochloride and Bovine Serum Albumin. Daru 2010, 18, 179–184.
  • Wani, T. A.; Bakheit, A. H.; Ansari, M. N.; Al-Majed, A.-R. A.; Al-Qahtani, B. M.; Zargar, S. Spectroscopic and Molecular Modeling Studies of Binding Interaction between Bovine Serum Albumin and Roflumilast. Drug. Des. Dev. Ther. 2018, 12, 2627–2634. DOI: 10.2147/DDDT.S169697.
  • Wani, T. A.; Bakheit, A. H.; Al-Majed, A.-R. A.; Bhat, M. A.; Zargar, S. Study of the Interactions of Bovine Serum Albumin with the New anti-Inflammatory Agent 4-(1,3-Dioxo-1,3-Dihydro-2H-Isoindol-2-yl)-N′-[(4-Ethoxy-Phenyl)Methylidene]Benzohydrazide Using a Multi-Spectroscopic Approach and Molecular Docking. Molecules 2017, 22, 1258. DOI: 10.3390/molecules22081258.
  • Czarny, A.; Boykin, D. W.; Wood, A. A.; Nunn, C. M.; Neidle, S.; Zhao, M.; Wilson, W. D. Analysis of Van Der Waals and Electrostatic Contributions in the Interactions of Minor Groove Binding Benzimidazoles with DNA. J. Am. Chem. Soc. 1995, 117, 4716–4717. DOI: 10.1021/ja00121a034.
  • Chen, Y.-H.; Lown, J. W. A New DNA Minor Groove Binding Motif: Cross-Linked Lexitropsins. J. Am. Chem. Soc. 1994, 116, 6995–7005. DOI: 10.1021/ja00095a001.
  • Wani, T. A.; Bakheit, A. H.; Zargar, S.; Hamidaddin, M. A.; Darwish, I. A. Spectrophotometric and Molecular Modelling Studies on In Vitro Interaction of Tyrosine Kinase Inhibitor Linifanib with Bovine Serum Albumin. PLoS One. 2017, 12, e0176015. DOI: 10.1371/journal.pone.0176015.
  • Alanazi, M. M.; Almehizia, A. A.; Bakheit, A. H.; Alsaif, N. A.; Alkahtani, H. M.; Wani, T. A. Mechanistic Interaction Study of 5,6-Dichloro-2-[2-(pyridin-2-yl)ethyl]isoindoline-1,3-dione with Bovine Serum Albumin by Spectroscopic and Molecular Docking Approaches. Saudi Pharm. J. 2019, 27, 341–347. DOI: 10.1016/j.jsps.2018.12.001.
  • Schütz, E.; von Ahsen, N. Influencing Factors of dsDNA Dye (High-Resolution) Melting Curves and Improved Genotype Call Based on Thermodynamic Considerations. Anal. Biochem. 2009, 385, 143–152. DOI: 10.1016/j.ab.2008.10.045.
  • Roy, S.; Banerjee, R.; Sarkar, M. Direct Binding of Cu(II)-Complexes of Oxicam NSAIDs with DNA Backbone. J. Inorg. Biochem. 2006, 100, 1320–1331. DOI: 10.1016/j.jinorgbio.2006.03.006.
  • Ross, P. D.; Subramanian, S. Thermodynamics of Protein Association Reactions: Forces Contributing to Stability. Biochemistry 1981, 20, 3096–3102. DOI: 10.1021/bi00514a017.
  • Al-Mehizia, A. A.; Bakheit, A. H.; Zargar, S.; Bhat, M. A.; Asmari, M. M.; Wani, T. A. Evaluation of Biophysical Interaction between Newly Synthesized Pyrazoline Pyridazine Derivative and Bovine Serum Albumin by Spectroscopic and Molecular Docking Studies. J. Spectro. 2019, 2019, 1–12. DOI: 10.1155/2019/3848670.
  • Zhang, G.; Wang, L.; Zhou, X.; Li, Y.; Gong, D. Binding Characteristics of Sodium Saccharin with Calf Thymus DNA In Vitro. J. Agric. Food Chem. 2014, 62, 991–1000. DOI: 10.1021/jf405085g.
  • Qais, F. A.; Ahmad, I. In Vitro Interaction of Cefotaxime with Calf Thymus DNA: Insights from Spectroscopic, Calorimetric and Molecular Modelling Studies. J. Pharm. Biomed. Anal. 2018, 149, 193–205. DOI: 10.1016/j.jpba.2017.10.016.
  • Zhang, S.; Zhu, Y.; Tu, C.; Wei, H.; Yang, Z.; Lin, L.; Ding, J.; Zhang, J.; Guo, Z. A Novel Cytotoxic Ternary Copper(II) Complex of 1,10-Phenanthroline and L-Threonine with DNA Nuclease Activity. J. Inorg. Biochem. 2004, 98, 2099–2106. DOI: 10.1016/j.jinorgbio.2004.09.014.
  • Li, F.-H.; Zhao, G.-H.; Wu, H.-X.; Lin, H.; Wu, X.-X.; Zhu, S.-R.; Lin, H.-K. Synthesis, Characterization and Biological Activity of Lanthanum(III) Complexes Containing 2-Methylene-1,10-Phenanthroline Units Bridged by Aliphatic Diamines. J. Inorg. Biochem. 2006, 100, 36–43. DOI: 10.1016/j.jinorgbio.2005.09.012.
  • Marty, R.; N'soukpoé-Kossi, C. N.; Charbonneau, D.; Weinert, C. M.; Kreplak, L.; Tajmir-Riahi, H.-A. Structural Analysis of DNA Complexation with Cationic Lipids. Nucleic Acids Res. 2009, 37, 849–857. DOI: 10.1093/nar/gkn1003.
  • N'soukpoé-Kossi, C. N.; Ouameur, A. A.; Thomas, T.; Shirahata, A.; Thomas, T. J.; Tajmir-Riahi, H. A. DNA Interaction with Antitumor Polyamine Analogues: A Comparison with Biogenic Polyamines. Biomacromolecules 2008, 9, 2712–2718. DOI: 10.1021/bm800412r.
  • Xu, Z.; Liu, Y.; Zhou, S.; Fu, Y.; Li, C. Analysis of the Interaction of Dp44mT with Human Serum Albumin and Calf Thymus DNA Using Molecular Docking and Spectroscopic Techniques. Int. J. Mol. Sci. 2016, 17, 1042. DOI: 10.3390/ijms17111915.
  • Cui, F.; Liu, Q.; Luo, H.; Zhang, G. Spectroscopic, Viscositic and Molecular Modeling Studies on the Interaction of 3′-Azido-Daunorubicin Thiosemicarbazone with DNA. J. Fluoresc. 2014, 24, 189–195. DOI: 10.1007/s10895-013-1285-8.
  • Perveen, F.; Qureshi, R.; Shah, A.; Ahmed, S.; Ansari, F. L.; Kalsoom, S.; Mehboob, S. Electrochemical, spectroscopic and molecular docking studies of anticancer organogermalactones. Int. Res. J. Pharm. 2011, 1, 1–8.
  • Trott, O.; Olson, A. J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2010, 31, 455–461. DOI: 10.1002/jcc.21334.
  • Morris, G. M.; Huey, R.; Lindstrom, W.; Sanner, M. F.; Belew, R. K.; Goodsell, D. S.; Olson, A. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J. Comput. Chem. 2009, 30, 2785–2791. DOI: 10.1002/jcc.21256.
  • Gaur, R.; Khan, R. A.; Tabassum, S.; Shah, P.; Siddiqi, M. I.; Mishra, L. Interaction of a Ruthenium(II)–Chalcone Complex with Double Stranded DNA: Spectroscopic, Molecular Docking and Nuclease Properties. J. Photochem. Photobiol. A. 2011, 220, 145–152. DOI: 10.1016/j.jphotochem.2011.04.005.
  • Drew, H. R.; Wing, R. M.; Takano, T.; Broka, C.; Tanaka, S.; Itakura, K.; Dickerson, R. E. Structure of a B-DNA Dodecamer: Conformation and Dynamics. Proc. Natl. Acad. Sci. U S A 1981, 78, 2179–2183. DOI: 10.1073/pnas.78.4.2179.
  • Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. N.; Weissig, H.; Shindyalov, I. N.; Bourne, P. E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. DOI: 10.1093/nar/28.1.235.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.