70
Views
0
CrossRef citations to date
0
Altmetric
Articles

Peculiar DNA partial threading intercalative ability of tetradentate copper complex based on ONO hydrazone backbone and an ancillary ligand

ORCID Icon &
Pages 518-529 | Received 02 Feb 2021, Accepted 27 Feb 2021, Published online: 15 Mar 2021

References

  • Kidani, Y. Development of Antitumor Platinum Complexes. Gan to Kagaku Ryoho 1983, 10, 2442–2452.
  • Rosenberg, B. Platinum Coordination Complexes in Cancer Chemotherapy. Naturwissenschaften 1973, 60, 399–406. DOI: 10.1007/BF00623551.
  • Prestayko, A. W.; D'Aoust, J. C.; Issell, B. F.; Crooke, S. T. Cisplatin (Cis-Diamminedichloroplatinum II). Cancer Treat. Rev. 1979, 6, 17–39. DOI: 10.1016/S0305-7372(79)80057-2.
  • Galanski, M.; Jakupec, M. A.; Keppler, B. K. Update of the Preclinical Situation of Anticancer Platinum Complexes: Novel Design Strategies and Innovative Analytical Approaches. Curr. Med. Chem. 2005, 12, 2075–2094. DOI: 10.2174/0929867054637626.
  • Wang, D.; Lippard, S. J. Cellular Processing of Platinum Anticancer Drugs. Nat Rev Drug Discov . 2005, 4, 307–320. DOI: 10.1038/nrd1691.
  • Tainer, J. A.; Getzoff, E. D.; Richardson, J. S.; Richardson, D. C. Structure and Mechanism of Copper, Zinc Superoxide Dismutase. Nature 1983, 306, 284–287. DOI: 10.1038/306284a0.
  • Zamble, D. B.; Mikata, Y.; Eng, C. H.; Sandman, K. E.; Lippard, S. J. Testis-Specific HMG-Domain Protein Alters the Responses of Cells to Cisplatin. J. Inorg. Biochem. 2002, 91, 451–462. DOI: 10.1016/S0162-0134(02)00472-5.
  • Bales, B.; Kodama, T.; Weledji, Y.; Pitie, M.; Meunier, B.; Greenberg, M. Mechanistic Studies on DNA Damage by Minor Groove Binding Copper-Phenanthroline Conjugates. Nucleic Acids Res. 2005, 33, 5371–5379. DOI: 10.1093/nar/gki856.
  • Vijayalakshmi, R.; Kanthimathi, M.; Subramanian, V.; Nair, B. U. Interaction of DNA with [Cr(Schiff Base)(H(2)O)(2)]ClO(4). Biochim Biophys Acta 2000, 1475, 157–162. DOI: 10.1016/S0304-4165(00)00063-5.
  • Manikandamathavan, V. M.; Weyhermuller, T.; Parameswari, R. P.; Sathishkumar, M.; Subramanian, V.; Nair, B. U. DNA/Protein Interaction and Cytotoxic Activity of Imidazole Terpyridine Derived Cu(II)/Zn(II) Metal Complexes. Dalton Trans. 2014, 43, 13018–13031. DOI: 10.1039/c4dt01378f.
  • Rajarajeswari, C.; Ganeshpandian, M.; Palaniandavar, M.; Riyasdeen, A.; Akbarsha, M. A. Mixed Ligand Copper(II) Complexes of 1,10-Phenanthroline with Tridentate Phenolate/Pyridyl/(Benz)Imidazolyl Schiff Base Ligands: covalent vs Non-Covalent DNA Binding, DNA Cleavage and Cytotoxicity. J. Inorg. Biochem. 2014, 140, 255–268. DOI: 10.1016/j.jinorgbio.2014.07.016.
  • Inamdar, P. R.; Sheela, A. Spectroscopic Investigations on Partial Intercalative Binding Behaviour of Terpyridine Based Copper(II) Complexes with DNA. J. Photochem. Photobiol. B. 2016, 159, 133–141. DOI: 10.1016/j.jphotobiol.2016.03.007.
  • Chaires, J. B.; Leng, F.; Przewloka, T.; Fokt, I.; Ling, Y.-H.; Perez- Soler, R.; Priebe, W. Structure-Based Design of a New Bisintercalating Anthracycline Antibiotic. J. Med. Chem. 1997, 40, 261–266. DOI: 10.1021/jm9607414.
  • Tanious, F. A.; Yen, S. F.; Wilson, W. D. Kinetic and Equilibrium Analysis of a Threading Intercalation Mode: DNA Sequence and Ion Effects. Biochemistry 1991, 30, 1813–1819. DOI: 10.1021/bi00221a013.
  • Tanious, F. A.; Jenkins, T. C.; Neidle, S.; Wilson, W. D. Substituent Position Dictates the Intercalative DNA-Binding Mode for Anthracene-9,10-Dione Antitumor Drugs. Biochemistry 1992, 31, 11632–11640. DOI: 10.1021/bi00161a050.
  • Önfelt, B.; Lincoln, P.; Nordén, B. Enantioselective DNA Threading Dynamics by Phenazine-Linked [Ru(Phen) 2 Dppz] 2+ Dimers. J. Am. Chem. Soc. 2001, 123, 3630–3637. DOI: 10.1021/ja003624d.
  • Wilhelmsson, L. M.; Westerlund, F.; Lincoln, P.; Nordén, B. DNA-Binding of Semirigid Binuclear Ruthenium Complex Delta,Delta-[mu-(11,11'-Bidppz)(Phen)(4)ru(2)](4+): Extremely Slow Intercalation Kinetics. J. Am. Chem. Soc. 2002, 124, 12092–12093. DOI: 10.1021/ja027252f.
  • Metcalfe, C.; Haq, I.; Thomas, J. A. A Facile Route to Bimetallic Ruthenium Dipyridophenazine Complexes. Inorg. Chem. 2004, 43, 317–323. DOI: 10.1021/ic034749x.
  • Rieter, W. J.; Kim, J. S.; Taylor, K. M. L.; An, H.; Lin, W.; Tarrant, T.; Lin, W. Hybrid Silica Nanoparticles for Multimodal Imaging. Angew. Chem. Int. Ed. Engl. 2007, 46, 3680–3688. DOI: 10.1002/anie.200604738.
  • Shahabadi, N.; Shiri, F.; Hadidi, S.; Farshadfar, K.; Sajadimajd, S.; Roe, S. M. Equilibrium and Site Selective Analysis for DNA Threading Intercalation of a New Phosphine Copper(I) complex: Insights from X-Ray Analysis, Spectroscopic and Molecular Modeling Studies. Spectrochim. Acta, Part A. 2020, 235, 118280–118283. DOI: 10.1016/j.saa.2020.118280.
  • Hot methanolic solutions of 4-chlorobenzhydrazide (2.49 mmol, 500 mg) and 1,1,1-trifluoryl-2,4-pentanedione (2.49 mmol, 0.4 ml) and acetic acid were added and refluxed for 2 h at 60–70 °C. The obtained yellow reaction mixture was evaporated and the white colored crystalline product obtained was washed with petroleum ether and dried. L =Yield 85%, White solid. m.p.: 90 °C. Anal calc. For C12H10ClF3N2O2: C: 47.00, H: 3.29, N: 9.13, O: 10.43. Found: C: 46.97, H: 3.28, N: 9.15, O: 10.42. UV-Vis (methanol): λmax (MeOH)/nm (ε,dm−3mol−1cm−1) 210(67,000), 240(35,666). FT-IR (KBr, νmax/cm−1): 1662.64 (C = O), 1643.35 (C = N), 3360 (NH). 1H NMR (400MHz, CDCl3): δH, ppm 2.053 (3H, s, CH3), 7.396, 7.417, 7.839, 7.860 (Ar-H, 4H), 3.113, 3.160, 3.278, 3.325 (CH2 protons, 2H).13C NMR (100MHz, CDCl3): δC ppm 15.86 (CH3), 46.89 (CH2), 92.49, 92.89 (CF3), 122.07, 124.93, 128.31, 131.48, 131.79 (Ar C), 138.59 (Ar C- Cl), 155.23 (C = N), 170.01 (C = O) GC-MS Calc. for C12H10ClF3N2O2: 306.6 Found: 306.14. Chromatogram: RT- 16.38 min, Purity: 99.19%.
  • 20 ml Methanolic solution of copper(II) perchlorate hexahydrate (1 mmol, 370.54mg) was added dropwise to the methanolic solution of L (1 mmol, 306 mg). To this, methanolic solution of 4,4’-bipyridine (1 mmol, 156mg) was added and stirred vigorously for 5 min. The reaction mixture was refluxed for 3 h at 65–70 °C. The resultant dark green mixture was filtered.
  • Inamdar, P. R.; Chauhan, R.; Abraham, J.; Sheela, A. DNA Interaction and Cytotoxic Activity of Copper Complex Based on Tridentate Hydrazone Derived Ligand and Nitrogen Donor Heterocycle. Inorg Chem Comm 2016, 67, 67–71. DOI: 10.1016/j.inoche.2016.03.012.
  • Shit, S.; Dey, S. K.; Rizzoli, C.; Zangrando, E.; Pilet, G.; Gomez-Garcia, C. J.; Mitra, S. The Key Role of Hydrogen Bonding in the Nuclearity of Three Copper(II) Complexes with Hydrazone-Derived Ligands and Nitrogen Donor Heterocycles. Inorg. Chim. Acta 2011, 370, 18–26. DOI: 10.1016/j.ica.2011.01.008.
  • UV absorbance of the commercial calf thymus DNA in a buffer gave an absorption ratio (A260/A280) of about 1.9:1, indicating that the DNA was sufficiently free from protein. The concentration of DNA in nucleobases was determined using molar extinction coefficient of 6600 M−1cm−1 at λmax 260 nm. All the DNA experiments were carried out in a Tris HCl buffer at pH 7.2 which was prepared in Mili-Q triply deionized water. Absorption spectral titration of complex was recorded in the range of 200–600 nm keeping the complex concentration constant (25 µM) and varying the CT-DNA concentrations from 0–120 µM in 50 mM Tris HCl buffer at pH 7.2. To nullify the absorbance changes because of the DNA, an equal volume of DNA was added to both the reference cell and the sample cells.
  • Saswati, S.; Chakraborty, A.; Acharyya, R.; Crochet, A.; Biswas, A.; Dash, S. P.; Patil, Y. P.; Panda, A. K.; Mukhopadhyay, S.; Nethaji, M.; et al. Synthesis, X-ray structure and in vitro cytotoxicity studies of Cu(i/ii) complexes of thiosemicarbazone: special emphasis on their interactions with DNA. Dalton Trans 2015, 44, 6140–6157. DOI: 10.1039/c4dt03764b.
  • Manikandamathavan, V.; Parameswari, R. P.; Weyhermuller, T.; Vasanthi, H. R.; Nair, B. U. Cytotoxic Copper (II) Mixed Ligand Complexes: crystal Structure and DNA Cleavage Activity. Eur. J. Med. Chem. 2011, 46, 4537–4547. DOI: 10.1016/j.ejmech.2011.07.030.
  • EtBr displacement assay was carried out using DNA – Ethidium bromide complexes including 20µM EtBr and 100 µM of CT-DNA concentrations in 50 mM Tris HCl buffer (pH 7.2). The DNA-EtBr complex was excited at 510nm and the subsequent emission maxima was observed at 610nm. The addition of the complex from the concentration 10–100 µM was carried out. The inner filter effect in the case of DNA-EtBr has been considered as it was carried out in (Tris HCl) buffered solutions using low volume cuvettes during analysis. Usually DNA-EtBr is excited above 520nm for the quenching studies, we have selected a comparatively short wavelength as 510nm for the excitation.
  • Sarwar, T.; Husain, M. A.; Rehman, S. U.; Ishqi, H. M.; Tabish, M. Multi-Spectroscopic and Molecular Modelling Studies on the Interaction of Esculetin with Calf Thymus DNA. Mol. Biosyst. 2015, 11, 522–531. DOI: 10.1039/c4mb00636d.
  • Suseela, Y. V.; Das, S.; Pati, S. K.; Govindaraju, T. Imidazolyl-Naphthalenediimide-Based Threading Intercalators of DNA. Chembiochem 2016, 17, 2162–2171. DOI: 10.1002/cbic.201600478.
  • Howell, L. A.; Gulam, R.; Mueller, A.; O'Connell, M. A.; Searcey, M. Design and Synthesis of Threading Intercalators to Target DNA. Bioorg. Med. Chem. Lett. 2010, 20, 6956–6959. DOI: 10.1016/j.bmcl.2010.09.128.
  • Rajalakshmi, S.; Weyhermüller, T.; Dinesh, M.; Nair, B. U. Copper(II) Complexes of Terpyridine Derivatives: A Footstep towards Development of Antiproliferative Agent for Breast Cancer. J. Inorg. Biochem. 2012, 117, 48–59. DOI: 10.1016/j.jinorgbio.2012.08.010.
  • Ponkarpagam, S.; Mahalakshmi, G.; Vennila Kuppanagounder, K. N.; Elango, P. Multi-Spectroscopic, Voltammetric and Molecular Docking Studies on Binding of anti-Diabetic Drug Rosigiltazone with DNA. Spectrochim Acta A Mol Biomol Spectrosc ... 2020, 234, 118268–118272. DOI: 10.1016/j.saa.2020.118268.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.