128
Views
0
CrossRef citations to date
0
Altmetric
Article

A new step in kinetic proofreading due to misacylated-tRNA during ribosomal peptide bond formation

ORCID Icon, &
Pages 635-646 | Received 07 May 2020, Accepted 26 Apr 2021, Published online: 28 May 2021

References

  • Kazemi, M.; Sočan, J.; Himo, F.; Åqvist, J. Mechanistic Alternatives for Peptide Bond Formation on the Ribosome. Nucleic Acids Res. 2018, 46, 5345–5354. DOI: 10.1093/nssar/gky367.
  • Melnikov, S. V.; Khabibullina, N. F.; Mairhofer, E.; Vargas-Rodriguez, O.; Reynolds, N. M.; Micura, R.; Söll, D.; Polikanov, Y. S. Mechanistic Insights into the Slow Peptide Bond Formation with D-Amino Acids in the Ribosomal Active site. Nucleic Acids Res. 2019, 47, 2089–2100. DOI: 10.1093/nar/gky1211.
  • Noller, H. F.; Lancaster, L.; Zhou, J.; Mohan, S. The Ribosome Moves: RNA Mechanics and Translocation. Nat. Struct. Mol. Biol. 2017, 24, 1021–1027. DOI: 10.1038/nsmb.3505.
  • Schmeing, T. M.; Ramakrishnan, V. What Recent Ribosome Structures Have Revealed about the Mechanism of Translation. Nature 2009, 461, 1234–1242. DOI: 10.1038/nature08403.
  • Dale, T.; Fahlman, R. P.; Olejniczak, M.; Uhlenbeck, O. C. Specificity of the Ribosomal a Site for Aminoacyl-tRNAs. Nucleic Acids Res. 2008, 37, 1202–1210. DOI: 10.1093/nar/gkn1040.
  • Rodnina, V. M.; Beringer, M.; Wintermeyer, W. How Ribosomes Make Peptide Bonds. Trends Biochem. Sci. 2007, 32, 20–26. DOI: 10.1016/j.tibs.2006.11.007.
  • Noel, J. K.; Whitford, P. C. How EF-Tu Can Contribute to Efficient Proofreading of aa-tRNA by the Ribosome. Nat. Commun. 2016, 7, 13314. DOI: 10.1038/ncomms13314.
  • Zaher, H. S.; Green, R. Quality Control by the Ribosome following Peptide Bond Formation. Nature 2009, 457, 161–166. DOI: 10.1038/nature07582.
  • Cochella, L.; Green, R. Fidelity in Protein Synthesis. Curr. Biol. 2005, 15, R536–R540. DOI: 10.1016/j.cub.2005.07.018.
  • Chung, L. W.; Sameera, W. M. C.; Ramozzi, R.; Page, A. J.; Hatanaka, M.; Petrova, G. P.; Harris, T. V.; Li, X.; Ke, Z.; Liu, F.; et al. The ONIOM Method and Its Applications. Chem. Rev. 2015, 115, 5678–5796. DOI: 10.1021/cr5004419.
  • Vreven, T.; Byun, K. S.; Komáromi, I.; Dapprich, S.; Montgomery, J. A.; Morokuma, K.; Frisch, M. J. Combining Quantum Mechanics Methods with Molecular Mechanics Methods in ONIOM. J. Chem. Theory Comput. 2006, 2, 815–826. DOI: 10.1021/ct050289g.
  • Anderson, J. A.; Hopkins, B. W.; Chapman, J. L.; Tschumper, G. S. A Systematic Assessment of Density Functional and ONIOM Schems for the Study of Hydrogen Bonding between Water and the Side Chains of Serine, Threonine, Asparagines, and Glutamine. J. Mol. Struct. Theochem. 2006, 771, 65–71. DOI: 10.1016/j.theochem.2006.03.042.
  • Gascon, J. A.; Batista, V. S. QM/MM Study of Energy Storage and Molecular Rearrangements Due to the Primary Event in Vision. Biophys. J. 2004, 87, 2931–2941. DOI: 10.1529/biophysj.104.048264.
  • Matsubara, T.; Dupuis, M.; Aida, M. The ONIOM Molecular Dynamics Method for Biochemical Applications: Cytidine Deaminase. Chem. Phys. Lett. 2007, 437, 138–142. DOI: 10.1016/j.cplett.2007.01.085.
  • Basavappa, R.; Sigler, P. B. The 3 a Crystal Structure of Yeast Initiator tRNA: Functional Implications in Initiator/Elongator Discrimination. EMBO J. 1991, 10, 3105–3111. DOI: 10.1002/j.1460-2075.1991.tb07864.x.
  • Jovine, L.; Djordjevic, S.; Rhodes, D. The Crystal Structure of Yeast Phenylalanine tRNA at 2.0 a Resolution: Cleavage by Mg(2+) in 15-Year Old Crystals. J. Mol. Biol. 2000, 301, 401–414. DOI: 10.1006/jmbi.2000.3950.
  • Arnez, J. G.; Steitz, T. A. Crystal Structures of Three Misacylating Mutants of Escherichia coli Glutaminyl-tRNA Synthetase Complexed with tRNA(Gln) and ATP. Biochemistry 1996, 35, 14725–14733. DOI: 10.1021/bi961532o.
  • Sekine, S.; Nureki, O.; Shimada, A.; Vassylyev, D. G.; Yokoyama, S. Structural Basis for Anticodon Recognition by Discriminating Glutamyl-tRNA Synthetase. Nat. Struct. Biol. 2001, 8, 203–206. DOI: 10.1038/84927.
  • Delagoutte, B.; Moras, D.; Cavarelli, J. tRNA Aminoacylation by Arginyl-tRNA Synthetase: Induced Conformations during Substrates Binding. EMBO J. 2000, 19, 5599–5610. DOI: 10.1093/emboj/19.21.5599.
  • Echenique, P.; Alonso, J. L. A Mathematical Introduction to Hartree-Fock SCF Methods in Quantum Chemistry. arXiv preprint 2007, arXiv:0705.0337. DOI: 10.1080/00268970701757875.
  • Bochevarov, A. D.; Sherrill, C. D. Hybrid Correlation Models Based on Active-Space Partitioning: Correcting Second-Order Moller-Plesset Perturbation Theory for Bond-Breaking Reactions. J. Chem. Phys. 2005, 122, 234110. DOI: 10.1063/1.1935508.
  • Monajemi, H.; Zain, S. M.; Wan Abdullah, W. A. T. Some Comparisons of Quantum Chemistry ab-Initio Methods in Studying Peptide Bond Energy Variation. AIP Conf. Proc. 2009, 1150, 201–205. DOI: 10.1063/1.3192237.
  • Gaussian 03, J.A.Pople, Gaussian, Inc., Pittsburgh, PA, 2003.
  • Sanbonmatsu, K. Y.; Joseph, S.; Tung, C. Simulating Movement of tRNA into the Ribosome during Decoding. Proc. Natl. Acad. Sci. USA. 2005, 102, 15854–15859. DOI: 10.1073/pnas.0503456102.
  • Gindulyte, A.; Bashan, A.; Agmon, L.; Massa, L.; Yonath, A.; Karle, J. The Transition State for Formation of the Peptide Bond in the Ribosome. Proc. Natl. Acad. Sci. USA. 2006, 103, 13327–13332. DOI: 10.1073/pnas.0606027103.
  • Govind, N.; Petersen, M.; Fitzgerald, G.; King-Smith, D.; Andzelm, J. Generalized Synchronous Transit Method for Transition State Location. Comput. Mater. Sci. 2003, 28, 250–258. DOI: 10.1016/S0927-0256(03)00111-3.
  • Wang, J.; Kwiatkowski, M.; Forster, A. C. Ribosomal Peptide Syntheses from Activated Substrates Reveal Rate Limitation by an Unexpected Step at the Peptidyl Site. J. Am. Chem. Soc. 2016, 138, 15587–15595. DOI: 10.1021/jacs.6b06936.
  • Fleisher, R. C.; Cornish, V. W.; Gonzalez, R. L., Jr. D-Amino Acid-Mediated Translation Arrest Is Modulated by the Identity of the Incoming Aminoacyl-tRNA. Biochemistry 2018, 57, 4241–4246. DOI: 10.1021/acs.biochem.8b00595.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.