153
Views
0
CrossRef citations to date
0
Altmetric
Articles

Synthesis, characterization, in vitro cytotoxicity and DNA interaction studies of antioxidant ferulic acid loaded on γ-Fe2O3@SiO2 nanoparticles

, , &
Pages 994-1011 | Received 28 May 2017, Accepted 19 Jun 2022, Published online: 11 Jul 2022

References

  • Aslam, H.; Shukrullah, S.; Naz, M. Y.; Fatima, H.; Hussain, H.; Ullah, S.; Assiri, M. A. Current and Future Perspectives of Multifunctional Magnetic Nanoparticles Based Controlled Drug Delivery Systems. J Drug Deliv Sci Technol. 2022, 67, 102946. DOI: 10.1016/j.jddst.2021.102946.
  • Ulbrich, K.; Holá, K.; Šubr, V.; Bakandritsos, A.; Tuček, J.; Zbořil, R. Targeted Drug Delivery with Polymers and Magnetic Nanoparticles: covalent and Noncovalent Approaches, Release Control, and Clinical Studies. Chem. Rev. 2016, 116, 5338–5431.
  • Mukherjee, S.; Liang, L.; Veiseh, O. Recent Advancements of Magnetic Nanomaterials in Cancer Therapy. Pharmaceutics. 2020, 12, 147. DOI: 10.3390/pharmaceutics12020147.
  • Yazdi, M. K.; Zarrintaj, P.; Khodadadi, A.; Ganjali, M. R.; Bagheri, B.; Habibzadeh, S.; Saeb, M. R.; Mozafari, M. Magnetic Nanoparticle-Based Hybrid Materials, Fundamentals and Applications Woodhead Publishing Series in Electronic and Optical Materials 2021 pages 425–445.
  • Auffinger, B.; Morshed, R.; Tobias, A.; Cheng, Y.; Ahmed, A. U.; Lesniak, M. S. Drug-Loaded Nanoparticle Systems and Adult Stem Cells: A Potential Marriage for the Treatment of Malignant Glioma? Oncotarget. 2013, 4, 378–396.
  • Paul, B. K.; Bhattacharjee, K.; Bose, S.; Guchhait, N. A Spectroscopic Investigation on the Interaction of a Magnetic Ferrofluid with a Model Plasma Protein: effect on the Conformation and Activity of the Protein. Phys. Chem. Chem. Phys. 2012, 14, 15482–15493. DOI: 10.1039/c2cp42415k.
  • Lartigue, L. N.; Wilhelm, C.; Servais, J.; Factor, C. C.; Dencausse, A.; Bacri, J.-C.; Luciani, N.; Gazeau, F. Nanomagnetic Sensing of Blood Plasma Protein Interactions with Iron Oxide Nanoparticles: impact on Macrophage Uptake. ACS Nano. 2012, 6, 2665–2678.
  • Mahmoudi, M.; Shokrgozar, M. A.; Sardari, S.; Moghadam, M. K.; Vali, H.; Laurent, S.; Stroeve, P. Irreversible Changes in Protein Conformation Due to Interaction with Superparamagnetic Iron Oxide Nanoparticles. Nanoscale. 2011, 3, 1127–1138.
  • Fatimah, I.; Fadillah, G.; Purwiandono, G.; Sahroni, I.; Purwaningsih, D.; Riantana, H.; Avif, A. N.; Sagadevan, S. Magnetic-Silica Nanocomposites and the Functionalized Forms for Environment and Medical Applications: A Review. Inorg. Chem. Commun. 2022, 137, 109213. DOI: 10.1016/j.inoche.2022.109213.
  • Pham, X.-H.; Hahm, E.; Kim, H.-M.; Son, B. S.; Jo, A.; An, J.; Tran Thi, T. A.; Nguyen, D. Q.; Jun, B.-H. Silica-Coated Magnetic Iron Oxide Nanoparticles Grafted onto Graphene Oxide for Protein Isolation. Nanomaterials. 2020, 10, 117. DOI: 10.3390/nano10010117.
  • Shahabadi, N.; Akbari, A.; Karampour, F.; Falsafi, M.; Zendehcheshm, S. In Vitro Cytotoxicity, Antibacterial Activity and HSA and ct-DNA Interaction Studies of Chlorogenic Acid Loaded on γ-Fe2O3@ SiO2 as New Nanoparticles. J. Biomol. Struct. 2022, 1–21. DOI: 10.1080/07391102.2022.2030799.
  • Srinivasan, M.; Sudheer, A. R.; Menon, V. P. Ferulic Acid: therapeutic Potential through Its Antioxidant Property. J. Clin. Biochem. Nutr. 2007, 40, 92–100.
  • Rosa, N. N.; Dufour, C.; Lullien-Pellerin, V.; Micard, V. Exposure or Release of Ferulic Acid from Wheat Aleurone: impact on Its Antioxidant Capacity. Food Chem. 2013, 141, 2355–2362. DOI: 10.1016/j.foodchem.2013.04.132.
  • Jayaprakasam, B.; Vanisree, M.; Zhang, Y.; Dewitt, D. L.; Nair, M. G. Impact of Alkyl Esters of Caffeic and Ferulic Acids on Tumor Cell Proliferation, Cyclooxygenase Enzyme, and Lipid Peroxidation. J. Agric. Food Chem. 2006, 54, 5375–5381.
  • Kumar, N.; Pruthi, V. Potential Applications of Ferulic Acid from Natural Sources. Biotechnol. Rep. 2014, 4, 86–93. DOI: 10.1016/j.btre.2014.09.002.
  • Kampa, M.; Alexaki, V.-I.; Notas, G.; Nifli, A.-P.; Nistikaki, A.; Hatzoglou, A.; Bakogeorgou, E.; Kouimtzoglou, E.; Blekas, G.; Boskou, D. Antiproliferative and Apoptotic Effects of Selective Phenolic Acids on T47D Human Breast Cancer Cells: potential Mechanisms of Action. Breast Cancer Res. 2003, 6, 1.
  • Shahabadi, N.; Falsafi, M.; Mansouri, K. Improving Antiproliferative Effect of the Anticancer Drug Cytarabine on Human Promyelocytic Leukemia Cells by Coating on Fe3O4@SiO2 Nanoparticles. Colloids Surf. B Biointerface. 2016, 141, 213–222. DOI: 10.1016/j.colsurfb.2016.01.054.
  • Peepliwal, A.; Vyawahare, S. D.; Bonde, C. G. A Quantitative Analysis of Zidovudine Containing Formulation by FT-IR and UV Spectroscopy. Anal. Method. 2010, 2, 1756–1763. DOI: 10.1039/c0ay00341g.
  • Jadhav, G. B.; Zalte, A. G.; Saudagar, R. B.; Pingale, A. P. Spectrophotometric Determination of and Validation of Zidovudine Concentration in Bulk and Dosage Form. Asian J. Pharm. Anal. 2014, 4, 51–53.
  • Reddy, D. R.; Theja, D.; Ruthu, M.; Sai, B.; Reddy, Y. P. Validated Spectrophotometric Method for Simultaneous Estimation of Zidovudine and Lamivudine in Combined Pharmaceutical Dosage Form. Int. J. Pharm. Tech. Res. 2012, 4, 311–314.
  • Hou, Y.; Xu, Z.; Sun, S. Controlled Synthesis and Chemical Conversions of FeO Nanoparticles. Angew. Chem. 2007, 119, 6445–6448. DOI: 10.1002/ange.200701694.
  • Granitzer, P.; Rumpf, K.; Venkatesan, M.; Roca, A.; Cabrera, L.; Morales, M.; Poelt, P.; Albu, M. Magnetic Study of Fe3O4 Nanoparticles Incorporated within Mesoporous Silicon. J. Electrochem. Soc. 2010, 157, K145–K151. DOI: 10.1149/1.3425605.
  • Ozkaya, T.; Toprak, M. S.; Baykal, A.; Kavas, H.; Köseoğlu, Y.; Aktaş, B. Synthesis of Fe 3 O 4 Nanoparticles at 100 C and Its Magnetic Characterization. J. Alloy. Compnd. 2009, 472, 18–23. DOI: 10.1016/j.jallcom.2008.04.101.
  • Khorshidi, A.; Shariati, S.; Rahimi, P. Magnetite Nanoparticles Catalyzed Preparation of Isatin Ketals under Solvent Free Conditions Promoted by Ultrasound Irradiation. Arabian J. Chem. 2019, 12, 2470–2475. DOI: 10.1016/j.arabjc.2015.04.002.
  • Sadeghi, S.; Aboobakri, E. Magnetic Nanoparticles with an Imprinted Polymer Coating for the Selective Extraction of Uranyl Ions. Microchim. Acta. 2012, 178, 89–97. DOI: 10.1007/s00604-012-0800-y.
  • Zhu, Y.; Jiang, F.; Chen, K.; Kang, F.; Tang, Z. Size-Controlled Synthesis of Monodisperse Superparamagnetic Iron Oxide Nanoparticles. J. Alloy. Compnd. 2011, 509, 8549–8553. DOI: 10.1016/j.jallcom.2011.05.115.
  • El Ghandoor, H.; Zidan, H.; Khalil, M. M.; Ismail, M. Synthesis and Some Physical Properties of Magnetite (Fe3O4) Nanoparticles. Int. J. Electrochem. Sci. 2012, 7, 5734–5745.
  • Sundrarajan, M.; Ramalakshmi, M. Novel Cubic Magnetite Nanoparticle Synthesis Using Room Temperature Ionic Liquid. J. Chem. 2012, 9, 1070–1076.
  • Du, N.; Xu, Y.; Zhang, H.; Zhai, C.; Yang, D. Selective Synthesis of Fe2O3 and Fe3O4 Nanowires via a Single Precursor: A General Method for Metal Oxide Nanowires. Nanoscale Res. Lett. 2010, 5, 1295–1300. DOI: 10.1007/s11671-010-9641-y.
  • Kumar, S.; Singh, V.; Aggarwal, S.; Mandal, U. K.; Kotnala, R. K. Influence of Processing Methodology on Magnetic Behavior of Multicomponent Ferrite Nanocrystals. J. Phys. Chem. C. 2010, 114, 6272–6280. DOI: 10.1021/jp911586d.
  • Mohapatra, S. C.; Ahmad, S. Fe3O4 Inverse Spinal Super Paramagnetic Nanoparticles. Mat. Chem. Phy. 2012, 132, 196–202.
  • Casillas, P. E. G.; Gonzalez, C. A. R.; Pérez, C. A. M. Infrared Spectroscopy of Functionalized Magnetic Nanoparticles. In Infrared Spectroscopy-Materials Science, Engineering and Technology, Publisher IntechOpen Limited 5 Princes Gate Court, London, SW7 2QJ, UNITED KINGDOM, 2012, 405.
  • Crompton, T. Analysis of Organosilicon Compounds. In Organic Silicon Compounds Wiley online library, Volumes1 and 2 1989 and 1998, 393–444.
  • Morales, M.; Veintemillas-Verdaguer, S.; Montero, M.; Serna, C.; Roig, A.; Casas, L.; Martinez, B.; Sandiumenge, F. Surface and Internal Spin Canting in γ-Fe2O3 Nanoparticles. Chem. Mater. 1999, 11, 3058–3064. DOI: 10.1021/cm991018f.
  • Wang, J.; Cao, Y.; Sun, B.; Wang, C. Characterisation of Inclusion Complex of Trans-Ferulic Acid and Hydroxypropyl-β-Cyclodextrin. Food Chem. 2011, 124, 1069–1075. DOI: 10.1016/j.foodchem.2010.07.080.
  • Sajjadi, S. E.; Shokoohinia, Y.; Moayedi, N.-S. Isolation and Identification of Ferulic Acid from Aerial Parts of Kelussia Odoratissima Mozaff. Jundishapur. J. Nat. Pharm. Product. 2012, 7, 159.
  • Mallakpour, S.; Dinari, M.; Hatami, M. Dispersion of Surface-Modified nano-Fe3O4 with Poly (Vinyl Alcohol) in Chiral Poly (Amide-Imide) Bearing Pyromellitoyl-Bis-l-Phenylalanine Segments. J. Mater. Sci. 2015, 50, 2759–2767. DOI: 10.1007/s10853-015-8831-5.
  • Swain, M. Chemicalize.org. J. Chem. Inf. Model. 2012, 52, 613–615. DOI: 10.1021/ci300046g.
  • Shah, B. P.; Pasquale, N.; De, G.; Tan, T.; Ma, J.; Lee, K. B. Core–Shell Nanoparticle-Based Peptide Therapeutics and Combined Hyperthermia for Enhanced Cancer Cell Apoptosis. ACS Nano. 2014, 8, 9379–9387. DOI: 10.1021/nn503431x.
  • Mahmoudi, M.; Hofmann, H.; Rothen-Rutishauser, B.; Petri-Fink, A. Assessing the in Vitro and in Vivo Toxicity of Superparamagnetic Iron Oxide Nanoparticles. Chem. Rev. 2012, 112, 2323–2338.
  • Zhao, Z.; Huang, D.; Yin, Z.; Chi, X.; Wang, X.; Gao, J. Magnetite Nanoparticles as Smart Carriers to Manipulate the Cytotoxicity of Anticancer Drugs: magnetic Control and pH-Responsive Release. J. Mater. Chem. 2012, 22, 15717–15725. DOI: 10.1039/c2jm31692g.
  • Creixell, M.; Herrera, A. P.; Latorre-Esteves, M.; Ayala, V.; Torres-Lugo, M.; Rinaldi, C. The Effect of Grafting Method on the Colloidal Stability and in Vitro Cytotoxicity of Carboxymethyl Dextran Coated Magnetic Nanoparticles. J. Mater. Chem. 2010, 20, 8539–8547. DOI: 10.1039/c0jm01504k.
  • Jakupec, M. A.; Galanski, M.; Arion, V. B.; Hartinger, C. G.; Keppler, B. K. Antitumour Metal Compounds: more than Theme and Variations. Dalton Trans. 2008, 183–194. DOI: 10.1039/B712656P.
  • Xu, X.; Wang, D.; Sun, X.; Zeng, S.; Li, L.; Sun, D. Thermodynamic and Spectrographic Studies on the Interactions of ct-DNA with 5-Fluorouracil and Tegafur. Thermochim. Acta. 2009, 493, 30–36. DOI: 10.1016/j.tca.2009.03.017.
  • Sirajuddin, M.; Ali, S.; Badshah, A. Drug–DNA Interactions and Their Study by UV–Visible, Fluorescence Spectroscopies and Cyclic Voltametry. J. Photochem. Photobiol. B. 2013, 124, 1–19. DOI: 10.1016/j.jphotobiol.2013.03.013.
  • Radi, A.-E.; El-Naggar, A.-E.; Nassef, H. M. Electrochemical and Spectral Studies on the Interaction of the Antiparasitic Drug Nitazoxanide with DNA. Electrochim. Acta. 2014, 129, 259–265. DOI: 10.1016/j.electacta.2014.02.092.
  • Arvin, M.; Dehghan, G.; Hosseinpourfeizi, M. A.; Moosavi-Movahedi, A. A. Spectroscopic and Electrochemical Studies on the Interaction of Carmoisine Food Additive with Native Calf Thymus DNA. Spectroscopy Lett. 2013, 46, 250–256. DOI: 10.1080/00387010.2012.723663.
  • Dehkordi, M. N.; Bordbar, A.-K.; Lincoln, P.; Mirkhani, V. Spectroscopic Study on the Interaction of ct-DNA with Manganese Salen Complex Containing Triphenyl Phosphonium Groups. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2012, 90, 50–54. DOI: 10.1016/j.saa.2012.01.015.
  • Shi, P.; Jiang, Q.; Zhao, Y.; Zhang, Y.; Lin, J.; Lin, L.; Ding, J.; Guo, Z. DNA Binding Properties of Novel Cytotoxic Gold (III) Complexes of Terpyridine Ligands: The Impact of Steric and Electrostatic Effects. J. Biol. Inorg. Chem. 2006, 11, 745–752.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.