335
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis of ribavirin 1,2,3- and 1,2,4-triazolyl analogs with changes at the amide and cytotoxicity in breast cancer cell lines

, , , & ORCID Icon
Pages 38-64 | Received 07 Jun 2022, Accepted 24 Jul 2022, Published online: 05 Aug 2022

References

  • Witkowski, J. T.; Robins, R. K.; Sidwell, R. W.; Simon, L. N. Design, Synthesis, and Broad Spectrum Antiviral Activity of 1-β-D-Ribofuranosyl-1,2,4-Triazole-3-Carboxamide and Related Nucleosides. J. Med. Chem. 1972, 15, 1150–1154. DOI: 10.1021/jm00281a014.
  • Sidwell, R. W.; Huffman, J. H.; Khare, G. P.; Allen, L. B.; Witkowski, J. T.; Robins, R. K. Broad-Spectrum Antiviral Activity of Virazole. 1-β-D-Ribofuranosyl-1,2,4-Triazole-3-Carboxamide. Science 1972, 177, 705–706. DOI: 10.1126/science.177.4050.705.
  • Te, H. S.; Randall, G.; Jensen, D. M. Mechanism of Action of Ribavirin in the Treatment of Chronic Hepatitis C. Gastroenterol. Hepatol. (N. Y.) 2007, 3, 218–225.
  • Nyström, K.; Waldenström, J.; Tang, K.-W.; Lagging, M. Ribavirin: pharmacology, Multiple Modes of Action and Possible Future Perspectives. Future Virol. 2019, 14, 153–160. DOI: 10.2217/fvl-2018-0166.
  • Aljabr, W.; Touzelet, O.; Pollakis, G.; Wu, W.; Munday, D. C.; Hughes, M.; Hertz-Fowler, C.; Kenny, J.; Fearns, R.; Barr, J. N.; et al. Investigating the Influence of Ribavirin on Human Respiratory Syncytial Virus RNA Synthesis by Using a High-Resolution Transcriptome Sequencing Approach. J. Virol. 2016, 90, 4876–4888. DOI: 10.1128/JVI.02349-15.
  • Carrillo-Bustamante, P.; Nguyen, T. H. T.; Oestereich, L.; Guenther, S.; Guedj, J.; Graw, F. Determining Ribavirin's Mechanism of Action against Lassa Virus Infection. Sci. Rep. 2017, 7, 1–12. DOI: 10.1038/s41598-017-10198-0.
  • Arab-Bafrani, Z.; Jabbari, A.; Hashemi, M. M.; Arabzadeh, A. M.; Gilanipour, A.; Mousavi, E. Identification of the Crucial Parameters regarding the Efficacy of Ribavirin Therapy in Crimean-Congo Haemorrhagic Fever (CCHF) Patients: A Systematic Review and Meta-Analysis. J. Antimicrob. Chemother. 2019, 74, 3432–3439. DOI: 10.1093/jac/dkz328.
  • Peters van Ton, A. M.; Gevers, T. J. G.; Drenth, J. P. H. Antiviral Therapy in Chronic Hepatitis E: A Systematic Review. J. Viral Hepat. 2015, 22, 965–973. DOI: 10.1111/jvh.12403.
  • Casaos, J.; Gorelick, N. L.; Huq, S.; Choi, J.; Xia, Y.; Serra, R.; Felder, R.; Lott, T.; Kast, R. E.; Suk, I.; et al. The Use of Ribavirin as an Anticancer Therapeutic: will It Go Viral? Mol. Cancer Ther. 2019, 18, 1185–1194. DOI: 10.1158/1535-7163.mct-18-0666.
  • De La Cruz-Hernandez, E.; Medina-Franco, J. L.; Trujillo, J.; Chavez-Blanco, A.; Dominguez-Gomez, G.; Perez-Cardenas, E.; Gonzalez-Fierro, A.; Taja-Chayeb, L.; Duenas-Gonzalez, A. Ribavirin as a Tri-Targeted Antitumor Repositioned Drug. Oncol. Rep. 2015, 33, 2384–2392. DOI: 10.3892/or.2015.3816.
  • Borden, K. L. B.; Culjkovic-Kraljacic, B. Ribavirin as an anti-Cancer Therapy: acute Myeloid Leukemia and Beyond? Leuk. Lymphoma 2010, 51, 1805–1815. DOI: 10.3109/10428194.2010.496506.
  • Kentsis, A.; Topisirovic, I.; Culjkovic, B.; Shao, L.; Borden, K. L. B. Ribavirin Suppresses eIF4E-Mediated Oncogenic Transformation by Physical Mimicry of the 7-Methyl Guanosine mRNA Cap. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 18105–18110. DOI: 10.1073/pnas.0406927102.
  • Dutta, D.; Russell, C.; Kim, J.; Chandra, S. Differential Mobility of Breast Cancer Cells and Normal Breast Epithelial Cells under DC Electrophoresis and Electroosmosis. Anticancer Res. 2018, 38, 5733–5738. DOI: 10.21873/anticanres.12911.
  • Hunke, M.; Martinez, W.; Kashyap, A.; Bokoskie, T.; Pattabiraman, M.; Chandra, S. Antineoplastic Actions of Cinnamic Acids and Their Dimers in Breast Cancer Cells: A Comparative Study. Anticancer Res. 2018, 38, 4469–4474. DOI: 10.21873/anticanres.12749.
  • Pettersson, F.; del Rincon, S. V.; Emond, A.; Huor, B.; Ngan, E.; Ng, J.; Dobocan, M. C.; Siegel, P. M.; Miller, W. H.Jr. Genetic and Pharmacologic Inhibition of eIF4E Reduces Breast Cancer Cell Migration, Invasion, and Metastasis. Cancer Res. 2015, 75, 1102–1112. DOI: 10.1158/0008-5472.CAN-14-1996.
  • Sappok, A.; Mahlknecht, U. Ribavirin Restores ESR1 Gene Expression and Tamoxifen Sensitivity in ESR1 Negative Breast Cancer Cell Lines. Clin. Epigenetics 2011, 3, 8. DOI: 10.1186/1868-7083-3-8.
  • Way, H.; Venteicher, B.; Ngo, H.; Chien, H.-C.; Schlessinger, A.; Giacomini, K.; Thomas, A. A. Ribavirin Analogs as Concentrative Nucleoside Transporter 2 Inhibitors. Presented at the 260th American Chemical Society National Meeting, San Francisco, CA (virtual); Poster MEDI-0129, 2020.
  • Huber-Ruano, I.; Pinilla-Macua, I.; Torres, G.; Casado, F. J.; Pastor-Anglada, M. Link between High-Affinity Adenosine Concentrative Nucleoside Transporter-2 (CNT2) and Energy Metabolism in Intestinal and Liver Parenchymal Cells. J. Cell Physiol. 2010, 225, 620–630. DOI: 10.1002/jcp.22254.
  • Pastor-Anglada, M.; Perez-Torras, S. Who is Who in Adenosine Transport. Front. Pharmacol. 2018, 9, 627. DOI: 10.3389/fphar.2018.00627.
  • Pastor-Anglada, M.; Perez-Torras, S. Emerging Roles of Nucleoside Transporters. Front. Pharmacol. 2018, 9, 606. DOI: 10.3389/fphar.2018.00606.
  • Young, J. D.; Yao, S. Y. M.; Baldwin, J. M.; Cass, C. E.; Baldwin, S. A. The Human Concentrative and Equilibrative Nucleoside Transporter Families, SLC28 and SLC29. Mol. Aspects Med. 2013, 34, 529–547. DOI: 10.1016/j.mam.2012.05.007.
  • Tatani, K.; Hiratochi, M.; Kikuchi, N.; Kuramochi, Y.; Watanabe, S.; Yamauchi, Y.; Itoh, F.; Isaji, M.; Shuto, S. Identification of Adenine and Benzimidazole Nucleosides as Potent Human Concentrative Nucleoside Transporter 2 Inhibitors: Potential Treatment for Hyperuricemia and Gout. J. Med. Chem. 2016, 59, 3719–3731. DOI: 10.1021/acs.jmedchem.5b01884.
  • Tatani, K.; Hiratochi, M.; Nonaka, Y.; Isaji, M.; Shuto, S. Identification of 8-Aminoadenosine Derivatives as a New Class of Human Concentrative Nucleoside Transporter 2 Inhibitors. ACS Med. Chem. Lett. 2015, 6, 244–248. DOI: 10.1021/ml500343r.
  • Poordad, F.; Chee, G. M. Pharmacology and Mechanisms of Action of Antiviral Drugs: ribavirin Analogs. In Advanced Therapy for Hepatitis C; McCaughan GW, McHutchison JG, Pawlotsky J-M, Eds. Wiley-Blackwell: Hoboken, NJ, 2012; pp 36–42
  • Eyer, L.; Nencka, R.; de Clercq, E.; Seley-Radtke, K.; Růžek, D. Nucleoside Analogs as a Rich Source of Antiviral Agents Active against Arthropod-Borne Flaviviruses. Antivir. Chem. Chemother. 2018, 26, 2040206618761299. DOI: 10.1177/2040206618761299.
  • Chudinov, M. V. Ribavirin and Its Analogs: Can You Teach an Old Dog New Tricks? Tonkie Khim. Tekhnol. 2019, 14, 7–23. DOI: 10.32362/2410-6593-2019-14-4-7-23.
  • Riley, T. A.; Larson, S. B.; Avery, T. L.; Finch, R. A.; Robins, R. K. 1,2,4-Diazaphosphole Nucleosides. Synthesis, Structure, and Antitumor Activity of Nucleosides with a λ3 Phosphorus Atom. J. Med. Chem. 1990, 33, 572–576. DOI: 10.1021/jm00164a016.
  • Sabat, N.; Migianu-Griffoni, E.; Tudela, T.; Lecouvey, M.; Kellouche, S.; Carreiras, F.; Gallier, F.; Uziel, J.; Lubin-Germain, N. Synthesis and Antitumor Activities Investigation of a C-Nucleoside Analogue of Ribavirin. Eur. J. Med. Chem. 2020, 188, 112009. DOI: 10.1016/j.ejmech.2019.112009.
  • Wambecke, A.; Laurent-Issartel, C.; Leroy-Dudal, J.; Giffard, F.; Cosson, F.; Lubin-Germain, N.; Uziel, J.; Kellouche, S.; Carreiras, F. Evaluation of the Potential of a New Ribavirin Analog Impairing the Dissemination of Ovarian Cancer Cells. PLoS One 2019, 14, e0225860. DOI: 10.1371/journal.pone.0225860.
  • El Akri, K.; Bougrin, K.; Balzarini, J.; Faraj, A.; Benhida, R. Efficient Synthesis and in Vitro Cytostatic Activity of 4-Substituted Triazolyl-Nucleosides. Bioorg. Med. Chem. Lett. 2007, 17, 6656–6659. DOI: 10.1016/j.bmcl.2007.08.077.
  • Chen, M.; Zhou, Z.; Suo, Y.; Li, M.; Yao, J.; Peng, L.; Xia, Y. Acyclonucleosides Bearing Coplanar Arylethynyltriazole Nucleobases: synthesis, Structural Analysis, and Biological Evaluation. New J. Chem. 2017, 41, 8509–8519. DOI: 10.1039/C7NJ01406F.
  • Xia, Y.; Qu, F.; Peng, L. Triazole Nucleoside Derivatives Bearing Aryl Functionalities on the Nucleobases Show Antiviral and Anticancer Activity. Mini Rev. Med. Chem. 2010, 10, 806–821. DOI: 10.2174/138955710791608316.
  • Wan, J.; Xia, Y.; Liu, Y.; Wang, M.; Rocchi, P.; Yao, J.; Qu, F.; Neyts, J.; Iovanna, J. L.; Peng, L. Discovery of Novel Arylethynyltriazole Ribonucleosides with Selective and Effective Antiviral and Antiproliferative Activity. J. Med. Chem. 2009, 52, 1144–1155. DOI: 10.1021/jm800927r.
  • Xia, Y.; Liu, Y.; Wan, J.; Wang, M.; Rocchi, P.; Qu, F.; Iovanna, J. L.; Peng, L. Novel Triazole Ribonucleoside down-Regulates Heat Shock Protein 27 and Induces Potent Anticancer Activity on Drug-Resistant Pancreatic Cancer. J. Med. Chem. 2009, 52, 6083–6096. DOI: 10.1021/jm900960v.
  • Earl, R. A.; Townsend, L. B. The Synthesis of 8-Aza-3-Deazaguanosine [6-Amino-1-(β-D-Ribofuranosyl)-v-Triazolo[4,5-c]Pyridin-4-One] via a Novel 1,3-Dipolar Cycloaddition Reaction. Can. J. Chem. 1980, 58, 2550–2561. DOI: 10.1139/v80-407.
  • Pradere, U.; Roy, V.; McBrayer, T. R.; Schinazi, R. F.; Agrofoglio, L. A. Preparation of Ribavirin Analogs by Copper- and Ruthenium-Catalyzed Azide-Alkyne 1,3-Dipolar Cycloaddition. Tetrahedron 2008, 64, 9044–9051. DOI: 10.1016/j.tet.2008.07.007.
  • Lin, Y.-I.; Lang, S. A.; Jr.Lovell, M. F.; Perkinson, N. A. New Synthesis of 1,2,4-Triazoles and 1,2,4-Oxadiazoles. J. Org. Chem. 1979, 44, 4160–4164. DOI: 10.1021/jo01337a031.
  • Kedrowski, B. L.; Wacholtz, W. F. Thematic Use of Ribavirin to Illustrate NMR Principles and Techniques. ACS Symp. Ser. 2016, 1225, 17–31.
  • Hou, S.; Liu, W.; Ji, D.; Zhao, Z. Efficient Synthesis of Triazole Moiety-Containing Nucleotide Analogs and Their Inhibitory Effects on a Malic Enzyme. Bioorg. Med. Chem. Lett. 2011, 21, 1667–1669. DOI: 10.1016/j.bmcl.2011.01.107.
  • Stimac, A.; Kobe, J. An Improved Preparation of 2,3,5-tri-O-Acyl-β-D-Ribofuranosyl Azides by the Lewis Acid-Catalyzed Reaction of β-D-Ribofuranosyl Acetates and Trimethylsilyl Azide: An Example of Concomitant Formation of the α Anomer by Trimethylsilyl Triflate Catalysis. Carbohydr. Res. 1992, 232, 359–365. DOI: 10.1016/0008-6215(92)80068-C.
  • Halter, R. J.; Fimmen, R. L.; McMahon, R. J.; Peebles, S. A.; Kuczkowski, R. L.; Stanton, J. F. Microwave Spectra and Molecular Structures of (Z)-Pent-2-en-4-Ynenitrile and Maleonitrile. J. Am. Chem. Soc. 2001, 123, 12353–12363. DOI: 10.1021/ja011195t.
  • Arstad, E.; Yan, R. A Process for the Preparation of Radioiodine Labeled Triazole Derivatives. WO2012022932A1, 2012.
  • Fu, X.; Albermann, C.; Zhang, C.; Thorson, J. S. Diversifying Vancomycin via Chemoenzymatic Strategies. Org. Lett. 2005, 7, 1513–1515. DOI: 10.1021/ol0501626.
  • Louvel, J.; Carvalho, J. F. S.; Yu, Z.; Soethoudt, M.; Lenselink, E. B.; Klaasse, E.; Brussee, J.; Ijzerman, A. P. Removal of Human Ether-a-Go-Go Related Gene (hERG) K + Channel Affinity through Rigidity: A Case of Clofilium Analogues. J. Med. Chem. 2013, 56, 9427–9440. DOI: 10.1021/jm4010434.
  • Boens, B.; Ouk, T. S.; Champavier, Y.; Zerrouki, R. Synthesis and Biological Evaluations of Click-Generated Nitrogen Mustards. Nucleosides Nucleotides Nucleic Acids 2015, 34, 500–514. DOI: 10.1080/15257770.2015.1017580.
  • Liu, H. M.; Yan, X.; Li, W.; Huang, C. A Mild and Selective Method for Cleavage of O-Acetyl Groups with Dibutyltin Oxide. Carbohydr. Res. 2002, 337, 1763–1767. DOI: 10.1016/s0008-6215(02)00277-x.[PMC].
  • Thurber, T. C.; Townsend, L. B. Ring Contractions of 5-Diazouracils. I. Conversions of 5-Diazouracils into 1,2,3-Triazoles by Hydrolysis and Methanolysis. J. Org. Chem. 1976, 41, 1041–1051. DOI: 10.1021/jo00868a026.
  • Konstantinova, I. D.; Chudinov, M. V.; Fateev, I. V.; Matveev, A. V.; Zhurilo, N. I.; Shvets, V. I.; Miroshnikov, A. I. Chemoenzymic Method of 1,2,4-Triazole Nucleoside Synthesis: Possibilities and Limitations. Russ. J. Bioorg. Chem. 2013, 39, 53–71. DOI: 10.1134/S1068162013010056.
  • Zhang, Y.-X.; Jin, R.-X.; Yin, H.; Li, Y.; Wang, X.-S. Copper-Catalyzed Dichloromethylazidation of Alkenes Using BrCCl2H as a Stoichiometric Dichloromethylating Reagent. Org. Lett. 2018, 20, 7283–7287. DOI: 10.1021/acs.orglett.8b03208.
  • Ulrich, S. M.; Buzko, O.; Shah, K.; Shokat, K. M. Towards the Engineering of an Orthogonal Protein Kinase/Nucleotide Triphosphate Pair. Tetrahedron 2000, 56, 9495–9502. DOI: 10.1016/S0040-4020(00)00834-6.
  • Heravi, M. M.; Tamimi, M.; Yahyavi, H.; Hosseinnejad, T. Huisgen's Cycloaddition Reactions: A Full Perspective. COC 2016, 20, 1591–1647. DOI: 10.2174/1385272820666151217183010.
  • Schoffelen, S.; Meldal, M. Alkyne-Azide Reactions. In Modern Alkyne Chemistry: Catalytic and Atom‐Economic Transformations; Trost BM, Li C-J, Eds. Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2015; pp 115–142.
  • Singh, M. S.; Chowdhury, S.; Koley, S. Advances of Azide-Alkyne Cycloaddition-Click Chemistry over the Recent Decade. Tetrahedron 2016, 72, 5257–5283. DOI: 10.1016/j.tet.2016.07.044.
  • Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Click Chemistry: diverse Chemical Function from a Few Good Reactions. Angew. Chem. Int. Ed. 2001, 40, 2004–2021. DOI: 10.1002/1521-3773(20010601)40:11 < 2004::AID-ANIE2004 > 3.0.CO;2-5.
  • Zhu, L.; Brassard, C. J.; Zhang, X.; Guha, P. M.; Clark, R. J. On the Mechanism of Copper(I)-Catalyzed Azide-Alkyne Cycloaddition. Chem. Rec. 2016, 16, 1501–1517. DOI: 10.1002/tcr.201600002.
  • Hanna, N. B.; Dimitrijevich, S. D.; Larson, S. B.; Robins, R. K.; Revankar, G. R. Synthesis and Single-Crystal x-Ray Diffraction Studies of 1-β-D-Ribofuranosyl-1,2,4-Triazole-3-Sulfonamide and Certain Related Nucleosides. J. Heterocycl. Chem. 1988, 25, 1857–1868. DOI: 10.1002/jhet.5570250649.
  • Al-Masoudi, N. A.; Issa, F. B.; Al-Timari, U. A. Synthesis of Some Isomeric Glycosyl Derivatives of 3-Mercapto-1,2,4-Triazole Nucleosides. Bull. Soc. Chim. Belg. 1997, 106, 215–220.
  • Kumarapperuma, S. C.; Sun, Y.; Jeselnik, M.; Chung, K.; Parker, W. B.; Jonsson, C. B.; Arterburn, J. B. Structural Effects on the Phosphorylation of 3-Substituted 1-β-D-Ribofuranosyl-1,2,4-Triazoles by Human Adenosine Kinase. Bioorg. Med. Chem. Lett. 2007, 17, 3203–3207. DOI: 10.1016/j.bmcl.2007.03.018.
  • Chung, D.-H.; Kumarapperuma, S. C.; Sun, Y.; Li, Q.; Chu, Y.-K.; Arterburn, J. B.; Parker, W. B.; Smith, J.; Spik, K.; Ramanathan, H. N.; et al. Synthesis of 1-β-D-Ribofuranosyl-3-Ethynyl-[1,2,4]Triazole and Its in Vitro and in Vivo Efficacy against Hantavirus. Antiviral Res. 2008, 79, 19–27. DOI: 10.1016/j.antiviral.2008.02.003.
  • Zhurilo, N. I.; Chudinov, M. V.; Matveev, A. V.; Smirnova, O. S.; Konstantinova, I. D.; Miroshnikov, A. I.; Prutkov, A. N.; Grebenkina, L. E.; Pulkova, N. V.; Shvets, V. I. Isosteric Ribavirin Analogues: Synthesis and Antiviral Activities. Bioorg. Med. Chem. Lett. 2018, 28, 11–14. DOI: 10.1016/j.bmcl.2017.11.029.
  • Kokeny, S.; Papp, J.; Weber, G.; Vaszko, T.; Carmona-Saez, P.; Olah, E. Ribavirin Acts via Multiple Pathways in Inhibition of Leukemic Cell Proliferation. Anticancer Res. 2009, 29, 1971–1980.
  • Pettersson, F.; Yau, C.; Dobocan, M. C.; Culjkovic-Kraljacic, B.; Retrouvay, H.; Puckett, R.; Flores, L. M.; Krop, I. E.; Rousseau, C.; Cocolakis, E.; et al. Ribavirin Treatment Effects on Breast Cancers Overexpressing eIF4E, a Biomarker with Prognostic Specificity for Luminal B-Type Breast Cancer. Clin. Cancer Res. 2011, 17, 2874–2884. DOI: 10.1158/1078-0432.CCR-10-2334.
  • Correia, A.; Silva, D.; Correia, A.; Vilanova, M.; Gärtner, F.; Vale, N. Study of New Therapeutic Strategies to Combat Breast Cancer Using Drug Combinations. Biomolecules 2018, 8, 175–175/123. DOI: 10.3390/biom8040175.
  • Takahashi, K.; Tanaka, M.; Inagaki, A.; Wanibuchi, H.; Izumi, Y.; Miura, K.; Nagayama, K.; Shiota, M.; Iwao, H. Establishment of a 5-Fluorouracil-Resistant Triple-Negative Breast Cancer Cell Line. Int. J. Oncol. 2013, 43, 1985–1991. DOI: 10.3892/ijo.2013.2135.
  • Ponce-Cusi, R.; Calaf, G. M. Apoptotic Activity of 5-Fluorouracil in Breast Cancer Cells Transformed by Low Doses of Ionizing α-Particle Radiation. Int. J. Oncol. 2016, 48, 774–782. DOI: 10.3892/ijo.2015.3298.
  • Ami, E-i.; Ohrui, H. Intriguing Antiviral Modified Nucleosides: A Retrospective View into the Future Treatment of COVID-19. ACS Med. Chem. Lett. 2021, 12, 510–517. DOI: 10.1021/acsmedchemlett.1c00070.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.