213
Views
0
CrossRef citations to date
0
Altmetric
Review

Unusual seven-membered ring sugars and nucleosides: synthesis and biological properties

&
Pages 407-425 | Received 19 Oct 2022, Accepted 20 Nov 2022, Published online: 30 Nov 2022

References

  • Pakulski, Z. Seven Membered Ring Sugars: A Decade Update. Pol. J. Chem. 2006, 80, 1293.
  • Saha, J.; Peczuh, M. W. Synthesis and Properties of Septanose Carbohydrates. Adv. Carbohydr. Chem. Biochem. 2011, 66, 121–186.
  • Bozo, E.; Medgyes, A.; Boros, S.; Kuszmann, J. Synthesis of 4-Substituted Phenyl 2,5-Anhydro-1,6-Dithio-alpha-D-Gluco- and -alpha-L-Guloseptanosides Possessing Antithrombotic Activity. Carbohydr. Res. 2000, 329, 25–40. DOI: 10.1016/S0008-6215(00)00156-7.
  • Duff, M. R.; Fyvie, W. S.; Markad, S. D.; Frankel, A.; E.; C. V.; Kumar, C. V.; Gascon, J. A.; M. W.; Peczuh, M. W. Computational and Experimental Investigations of Mono-Septanoside Binding by Concanavalin A: correlation of Ligand Stereochemistry to Enthalpies of Binding. Org. Biomol. Chem. 2011, 9, 154–164. DOI: 10.1039/c0ob00425a.
  • Sofia, M. J. Nucleosides and Nucleotides for the Treatment of Viral Diseases. Annu. Rep. Med. Chem. 2014, 49, 221.
  • Parker, W. B. Enzymology of Purine and Pyrimidine Antimetabolites Used in the Treatment of Cancer. Chem. Rev. 2009, 109, 2880–2893.
  • Sabatino, D.; Damha, M. J. Oxepane Nucleic Acids: Synthesis, Characterization, and Properties of Oligonucleotides Bearing a Seven-Membered Carbohydrate Ring. J. Am. Chem. Soc. 2007, 129, 8259–8270. DOI: 10.1021/ja071336c.
  • Sabatino, D.; Damha, M. J. Synthesis and Properties of Oligonucleotides Containing a 7-Membered (Oxepane) Sugar Ring. Nucleosides Nucleotides Nucleic Acids 2007, 26, 1185–1188.
  • Richard, S.; Gilles, G.; David, D.; Frederic, L.; Jean-Christophe, M.; Thierry, C. Seven Membered Ring Nucleosides. WO Pat 2007025043 A2, 2007.
  • Mitsuoka, Y.; Kodama, T.; Ohnishi, R.; Hari, Y.; Imanishi, T.; Obika, S. A Bridged Nucleic Acid, 2',4'-BNA COC: synthesis of Fully Modified Oligonucleotides Bearing Thymine, 5-Methylcytosine, Adenine and Guanine 2',4'-BNA COC Monomers and RNA-Selective Nucleic-Acid Recognition. Nucleic Acids Res. 2009, 37, 1225–1238.
  • Lillelund, V. H.; Jensen, H. H.; Liang, X.; Bols, M. Recent Developments of Transition-State Analogue Glycosidase Inhibitors of Non-Natural Product. Chem. Rev. 2002, 102, 515–553. DOI: 10.1021/cr000433k.
  • Mitrakou, A.; Tountas, N.; Raptis, A. E.; Bauer, R. J.; Schulz, H.; Raptis, S. A. Long-Term Effectiveness of a New α-Glucosidase Inhibitor (Bay m1099-Miglitol) in Insulin-Treated Type 2 Diabetes Mellitus. Diabetic Med. 1998, 15, 657–660. DOI: 10.1002/(SICI)1096-9136(199808)15:8<657::AID-DIA652>3.0.CO;2-7.
  • Butters, T. D.; Dwek, R. A.; Platt, F. M. Therapeutic Applications of Imino Sugars in Lysosomal Storage Disorders. Curr. Top. Med. Chem. 2003, 3, 561–574. DOI: 10.2174/1568026033452483.
  • Jacob, G. S. Glycosylation Inhibitors in Biology and Medicine. Curr. Opin. Struct. Biol. 1995, 5, 605–611. DOI: 10.1016/0959-440X(95)80051-4.
  • Papandreou, M. J.; Barbouche, R.; Guieu, R.; Kieny, M. P.; Fenouillet, E. The Alpha-Glucosidase Inhibitor 1-Deoxynojirimycin Blocks Human Immunodeficiency Virus Envelope Glycoprotein-Mediated Membrane Fusion at the CXCR4 Binding Step. Mol. Pharmacol. 2002, 61, 186–193. DOI: 10.1124/mol.61.1.186.
  • Mehta, A. S.; Carrouee, B.; Conyers, R.; Jordan, T.; Butters, R.; Dwek, A.; Block, T. M. Inhibition of Hepatitis B Virus DNA Replication by Imino Sugars without the Inhibition of the DNA Polymerase: therapeutic Implications. Hepatology 2001, 33, 1488–1495.
  • Greimel, P.; Spreitz, J.; Stütz, A. E.; Wrodnigg, T. M. Iminosugars and Relatives as Antiviral and Potential anti-Infective Agents. Curr. Top. Med. Chem. 2003, 3, 513–523. DOI: 10.2174/1568026033452456.
  • Goss, P. E.; Baptiste, J.; Fernandes, B.; Baker, M.; Dennis, J. W. A Phase I Study of Swainsonine in Patients with Advanced Malignancies. Cancer Res. 1994, 54, 1450–1457.
  • Rye, P. D.; Bovin, N. V.; Vlasova, E. V.; Walker, R. A. Monoclonal Antibody LU-BCRU-G7 against a Breast Tumour-Associated Glycoprotein Recognizes the Disaccharide Galβ1-3GlcNAc. Glycobiology 1995, 5, 385–389. DOI: 10.1093/glycob/5.4.385.
  • Vasella, A.; Davies, G. J.; Böhm, M. Glycosidase Mechanisms. Curr. Opin. Chem. Biol. 2002, 6, 619–629. DOI: 10.1016/S1367-5931(02)00380-0.
  • Alper, J. Searching for Medicine’s Sweet Spot. Science 2001, 291, 2338–2343. DOI: 10.1126/science.291.5512.2338.
  • Paulsen, H.; Todt, K. Monosaccharide Mit Stickstoffhaltigem Ring, XII. Über Monosaccharide Mit Stickstoffhaltigem Siebenring. Chem. Ber. 1967, 100, 512–520. DOI: 10.1002/cber.19671000217.
  • Moris-Varas, F.; Qian, X.-H.; Wong, C.-H. Enzymatic/Chemical Synthesis and Biological Evaluation of Seven-Membered Iminocyclitols. J. Am. Chem. Soc. 1996, 118, 7647–7652. DOI: 10.1021/ja960975c.
  • Orwig, S. D.; Tan, Y. L.; Grimster, N. P.; Yu, Z.; Powers, E. T.; Kelly, J. W.; Lieberman, R. L. Binding of 3,4,5,6-Tetrahydroxyazepanes to the Acid-Glucosidase Active Site: implications for Pharmacological Chaperone Design for Gaucher Disease. Biochemistry 2011, 50, 10647–10657. DOI: 10.1021/bi201619z.
  • Zhao, W. B.; Nakagawa, S.; Kato, A.; Adachi, I.; Jia, Y. M.; Hu, X. G.; Fleet, G. W. J.; Wilson, F.; Horne, G.; Yoshihara, A.; et al. General Synthesis of Sugar-Derived Azepane Nitrones: precursors of Azepane Iminosugars. J. Org. Chem. 2013, 78, 3208–3221.
  • Hongqing, L.; Blériot, Y.; Chantereau, C.; Mallet, J. M.; Sollogoub, M.; Zhang, Y.; Rodríguez-García, E.; Vogel, P.; Jiménez-Barbero, J.; Sinaÿ, P. The First Synthesis of Substituted Azepanes Mimicking Monosaccharides: A New Class of Potent Glycosidase Inhibitors. Org. Biomol. Chem. 2004, 2, 1492.
  • Blériot, Y.; Giroult, A.; Mallet, J. M.; Rodriguez, E.; Vogel, P.; Sinaÿ, P. Synthesis of Seven- and Eight-Membered Carbasugar Analogs via Ring-Closing Metathesis and Their Inhibitory Activities toward Glycosidases. Tetrahedron: Asymmetry 2002, 13, 2553–2565. DOI: 10.1016/S0957-4166(02)00654-7.
  • Li, H.; Schütz, C.; Favre, S.; Zhang, Y.; Vogel, P.; Sinaÿ, P.; Blériot, Y. Nucleophilic Opening of Epoxyazepanes: expanding the Family of Polyhydroxyazepane-Based Glycosidase Inhibitors. Org. Biomol. Chem. 2006, 4, 1653–1662. DOI: 10.1039/b518117h.
  • Li, H.; Blériot, Y.; Mallet, M.; Rodriguez-Garcia, E.; Vogel, P.; Zhang, Y.; Sinaÿ, P. New 1-Amino-1-Deoxy- and 2-Amino-2-Deoxy-Polyhydroxyazepanes: synthesis and Inhibition of Glycosidases. Tetrahedron: Asymmetry 2005, 16, 313–319. DOI: 10.1016/j.tetasy.2004.12.005.
  • Désiré, J.; Mondon, M.; Fontelle, N.; Nakagawa, S.; Hirokami, Y.; Adachi, I.; Iwaki, R.; Fleet, G. W. J.; Alonzi, D. S.; Twigg, G.; et al. N- and C-Alkylation of Seven-Membered Iminosugars Generates Potent Glucocerebrosidaseinhibitors and F508del-CFTR Correctors. Org. Biomol. Chem. 2014, 12, 8977–8996.
  • Li, H.; Zhang, Y.; Vogel, P.; Sinaÿ, P.; Blériot, Y. Tandem Staudinger-azaWittig Mediated Ring Expansion: Rapid Access to New Isofagomine-Tetrahydroxyazepane Hybrids. Chem. Commun. 2007, 2, 183–185. DOI: 10.1039/B610377D.
  • Jespersen, T. M.; Dong, W.; Sierks, M. R.; Skrydstrup, T.; Lundt, I.; Bols, M. Isofagomine, a Potent, New Glycosidase Inhibitor. Angew. Chem. Int. Ed. Engl. 1994, 33, 1778–1779. DOI: 10.1002/anie.199417781.
  • Liu, H.; Liang, X.; Sohoel, H.; Bulow, A.; Bols, M. Noeuromycin, a Glycosyl Cation Mimic That Strongly Inhibits Glycosidases. J. Am. Chem. Soc. 2001, 123, 5116–5117.
  • Li, H.; Liu, T.; Zhang, Y.; Favre, S.; Bello, C.; Vogel, P.; Butters, T. D.; Oikonomakos, N. G.; Marrot, J.; Blériot, Y. New Synthetic Seven-Membered 1-Azasugars Displaying Potent Inhibition towards Glycosidases and Glucosylceramide Transferase. ChemBioChem 2008, 9, 253–260. DOI: 10.1002/cbic.200700496.
  • Compain, P.; Martin, O. R.; Boucheron, C.; Godin, G.; Yu, L.; Ikeda, K.; Asano, N. Design and Synthesis of Highly Potent and Selective Pharmacological Chaperones for the Treatment of Gaucher’s Disease. ChemBioChem 2006, 7, 1356–1359. DOI: 10.1002/cbic.200600217.
  • Li, H.; Marcelo, F.; Bello, C.; Vogel, P.; D.; Butters, T. D.; Rauter, A. P.; Zhang, Y.; Sollogoub, M.; Blériot, Y. Design and Synthesis of Acetamido Tri- and Tetra-Hydroxyazepanes: Potent and Selective β-N-Acetylhexosaminidase Inhibitors. Bioorg. Med. Chem. 2009, 17, 5598–5604.
  • Dey, S.; Jayaraman, N. Branching out at C-2 of Septanosides. Synthesis of 2-Deoxy-2-C-Alkyl/Aryl Septanosides from a Bromo-Oxepine. Beilstein J. Org. Chem. 2012, 8, 522–527.
  • Ganesh, N. V.; Jayaraman, N. Synthesis of Septanosides through an Oxyglycal Route. J. Org. Chem. 2007, 72, 5500–5504.
  • Miyaura, N.; Yamada, K.; Suzuki, A. A New Stereospecific Cross-Coupling by the Palladium-Catalyzed Reaction of 1-Alkenylboranes with 1-Alkenyl or 1-Alkynyl Halides. Tetrahedron Lett. 1979, 20, 3437–3440. DOI: 10.1016/S0040-4039(01)95429-2.
  • Miyaura, N.; Suzuki, A. Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds. Chem. Rev. 1995, 95, 2457–2483. DOI: 10.1021/cr00039a007.
  • Sonogashira, K.; Tohda, Y.; Hagihara, N. A Convenient Synthesis of Acetylenes: catalytic Substitutions of Acetylenic Hydrogen with Bromoalkenes, Iodoarenes and Bromopyridines. Tetrahedron Lett. 1975, 16, 4467–4470. DOI: 10.1016/S0040-4039(00)91094-3.
  • Chinchilla, R.; Nájera, C. Recent Advances in Sonogashira Reactions. Chem. Soc. Rev. 2011, 40, 5084–5121.
  • Liu, P. S.; Marquez, V. E.; Driscoll, J. S.; Fuller, R. W.; McCormack, J. J. Cyclic Urea Nucleosides. Cytidine Deaminase Activity as a Function of Aglycon Ring Size. J. Med. Chem. 1981, 24, 662–666.
  • Ludek, O. R.; Schroeder, G. K.; Liao, C.; Russ, P. L.; Wolfenden, R.; Marquez, V. E. Synthesis and Conformational Analysis of Locked Carbocyclic Analogues of 1,3-Diazepinone Riboside, a High-Affinity Cytidine Deaminase Inhibitor. J. Org. Chem. 2009, 74, 6212–6223.
  • Abrous, L.; Hynes, J.; Friedrich, S. R.; Smith, A.; Hirschmann, B. R. Synthesis of the Core Structure of Acutumine. Org. Lett. 2001, 3, 1089–1092. DOI: 10.1021/ol015698f.
  • Staudinger, H.; Meyer, J. Über neue organische phosphorverbindungen III. Phosphinmethylenderivate und phosphinimine. Helv. Chim. Acta 1919, 2, 635–646. DOI: 10.1002/hlca.19190020164.
  • Doyle, M. P.; Dellaria, J. F.; Jr.; Siegfried, B.; Bishop, S. W. Reductive Deamination of Arylamines by Alkyl Nitrites in N,N-Dimethylformamide. A Direct Conversion of Arylamines to Aromatic Hydrocarbons. J. Org. Chem. 1977, 42, 3494–3498. DOI: 10.1021/jo00442a009.
  • Fryer, R. I., Ed. Bicyclic Diazepines: Diazepines with an Additional Ring, Volume 50; John Wiley and Sons: New York, 1991; pp 183–946.
  • Hari, Y.; Obika, S.; Ohnishi, R.; Eguchi, K.; Osaki, T.; Ohishi, H.; Imanishi, T. Synthesis and Properties of 2′-O, 4′-C-Methyleneoxymethylene Bridged Nucleic Acid. Bioorg. Med. Chem. 2006, 14, 1029–1038.
  • Vorbrüggen, H.; Krolikiewicz, K.; Bennua, B. Nucleoside Syntheses, XXII1) Nucleoside Synthesis with Trimethylsilyl Triflate and Perchlorate as Catalysts. Chem. Ber. 1981, 114, 1234–1255. DOI: 10.1002/cber.19811140404.
  • Vorbruggen, H.; Hofle, G. Nucleoside Syntheses, XXIII1) on the Mechanism of Nucleoside Synthesis. Chem. Ber. 1981, 114, 1256.
  • Hoberg, J. O. Formation of Seven-Membered Oxacycles through Ring Expansion of Cyclopropanated Carbohydrates. J. Org. Chem. 1997, 62, 6615–6618. DOI: 10.1021/jo970649v.
  • Habibian, M.; Martinez-Montero, S.; Portella, G.; Chua, Z.; Bohle, D. S.; Orozco, M.; Damha, M. J. Seven-Membered Ring Nucleoside Analogues: stereoselective Synthesis and Studies on Their Conformational Properties. Org. Lett. 2015, 17, 5416–5419.
  • Jana, S. K.; Harikrishna, S.; Sudhakar, S.; El-Khoury, R.; Pradeepkumar, P. I.; Damha, M. J. Nucleoside Analogues with a Seven-Membered Sugar Ring: Synthesis and Structural Compatibility in DNA–RNA Hybrids. J. Org. Chem. 2022, 87, 2367–2379.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.