102
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Downregulation of fibrosis related hsa-miR-29c-3p in human CAKUT

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , & ORCID Icon show all
Pages 945-958 | Received 17 Jan 2023, Accepted 20 May 2023, Published online: 08 Jun 2023

References

  • Nakanishi, K.; Yoshikawa, N. Genetic Disorders of Human Congenital Anomalies of the Kidney and Urinary Tract (CAKUT). Pediatr. Int. 2003, 45, 610–616. DOI: 10.1046/j.1442-200X.2003.01779.x.
  • Sanna-Cherchi, S.; Ravani, P.; Corbani, V.; Parodi, S.; Haupt, R.; Piaggio, G.; Innocenti, M. L. D.; Somenzi, D.; Trivelli, A.; Caridi, G.; et al. Renal Outcome in Patients with Congenital Anomalies of the Kidney and Urinary Tract. Kidney Int. 2009, 76, 528–533. DOI: 10.1038/ki.2009.220.
  • Chevalier, R. L.; Forbes, M. S.; Thornhill, B. A. Ureteral Obstruction as a Model of Renal Interstitial Fibrosis and Obstructive Nephropathy. Kidney Int. 2009, 75, 1145–1152. DOI: 10.1038/ki.2009.86.
  • Kajbafzadeh, A.-M.; Payabvash, S.; Salmasi, A. H.; Monajemzadeh, M.; Tavangar, S. M. Smooth Muscle Cell Apoptosis and Defective Neural Development in Congenital Ureteropelvic Junction Obstruction. J. Urol. 2006, 176, 718–723; discussion 723. DOI: 10.1016/j.juro.2006.03.041.
  • Murakumo, M.; Nonomura, K.; Yamashita, T.; Ushiki, T.; Abe, K.; Koyanagi, T. Structural Changes of Collagen Components and Diminution of Nerves in Congenital Ureteropelvic Junction Obstruction. J. Urol. 1997, 157, 1963–1968. DOI: 10.1016/S0022-5347(01)64910-3.
  • Lee, B. R.; Silver, R. I.; Partin, A. W.; Epstein, J. I.; Gearhart, J. P. A Quantitative Histologic Analysis of Collagen Subtypes: The Primary Obstructed and Refluxing Megaureter of Childhood. Urology. 1998, 51, 820–823. DOI: 10.1016/S0090-4295(98)00013-2.
  • Lee, B. R.; Partin, A. W.; Epstein, J. I.; Quinlan, D. M.; Gosling, J. A.; Gearhart, J. P. A Quantitative Histological Analysis of the Dilated Ureter of Childhood. J. Urol. 1992, 148, 1482–1486. DOI: 10.1016/S0022-5347(17)36944-6.
  • Jerala, M.; Hauptman, N.; Kojc, N.; Zidar, N. Expression of Fibrosis-Related Genes in Liver and Kidney Fibrosis in Comparison to Inflammatory Bowel Diseases. Cells 2022, 11, 314. DOI: 10.3390/cells11030314.
  • Jovanovic, I.; Zivkovic, M.; Kostic, M.; Krstic, Z.; Djuric, T.; Kolic, I.; Alavantic, D.; Stankovic, A. Transcriptome-Wide Based Identification of MiRs in Congenital Anomalies of the Kidney and Urinary Tract (CAKUT) in Children: The Significant Upregulation of Tissue MiR-144 Expression. J. Transl. Med. 2016, 14, 193. DOI: 10.1186/s12967-016-0955-0.
  • Jovanovic, I.; Zivkovic, M.; Kostic, M.; Krstic, Z.; Djuric, T.; Licastro, D.; Meroni, G.; Alavantic, D.; Stankovic, A. Transcriptome-Driven Integrative Exploration of Functional State of Ureter Tissue Affected by CAKUT. Life Sci. 2018, 212, 1–8. DOI: 10.1016/j.lfs.2018.09.042.
  • Wynn, T. A.; Vannella, K. M. Macrophages in Tissue Repair, Regeneration, and Fibrosis. Immunity 2016, 44, 450–462. DOI: 10.1016/j.immuni.2016.02.015.
  • Gieseck, R. L.; Wilson, M. S.; Wynn, T. A. Type 2 Immunity in Tissue Repair and Fibrosis. Nat. Rev. Immunol. 2018, 18, 62–76. DOI: 10.1038/nri.2017.90.
  • Sun, K.; Li, Y.; Jin, J. A Double-Edged Sword of Immuno-Microenvironment in Cardiac Homeostasis and Injury Repair. Sig. Transduct. Target Ther. 2021, 6, 79. DOI: 10.1038/s41392-020-00455-6.
  • Liu, X.; Miao, J.; Wang, C.; Zhou, S.; Chen, S.; Ren, Q.; Hong, X.; Wang, Y.; Hou, F. F.; Zhou, L.; et al. Tubule-Derived Exosomes Play a Central Role in Fibroblast Activation and Kidney Fibrosis. Kidney Int. 2020, 97, 1181–1195. DOI: 10.1016/j.kint.2019.11.026.
  • Zhao, S.; Li, W.; Yu, W.; Rao, T.; Li, H.; Ruan, Y.; Yuan, R.; Li, C.; Ning, J.; Li, S.; et al. Exosomal MiR-21 from Tubular Cells Contributes to Renal Fibrosis by Activating Fibroblasts via Targeting PTEN in Obstructed Kidneys. Theranostics 2.021, 11, 8660–8673. DOI: 10.7150/thno.62820.
  • Liu, Y.; Bi, X.; Xiong, J.; Han, W.; Xiao, T.; Xu, X.; Yang, K.; Liu, C.; Jiang, W.; He, T.; et al. MicroRNA-34a Promotes Renal Fibrosis by Downregulation of Klotho in Tubular Epithelial Cells. Mol. Ther. 2019, 27, 1051–1065. DOI: 10.1016/j.ymthe.2019.02.009.
  • Jin, J.; Qian, F.; Zheng, D.; He, W.; Gong, J.; He, Q. Mesenchymal Stem Cells Attenuate Renal Fibrosis via Exosomes-Mediated Delivery of MicroRNA Let-7i-5p Antagomir. Int. J. Nanomed. 2021, 16, 3565–3578. DOI: 10.2147/IJN.S299969.
  • Qin, W.; Chung, A. C. K.; Huang, X. R.; Meng, X.-M.; Hui, D. S. C.; Yu, C.-M.; Sung, J. J. Y.; Lan, H. Y. TGF-β/Smad3 Signaling Promotes Renal Fibrosis by Inhibiting MiR-29. J. Am. Soc. Nephrol. 2011, 22, 1462–1474. DOI: 10.1681/ASN.2010121308.
  • Fan, Y.; Chen, H.; Huang, Z.; Zheng, H.; Zhou, J. Emerging Role of MiRNAs in Renal Fibrosis. RNA Biol. 2020, 17, 1–12. DOI: 10.1080/15476286.2019.1667215.
  • Yoshida, J.; Tsuchiya, M.; Tatsuma, N.; Murakami, M. Mass Screening for Early Detection of Congenital Kidney and Urinary Tract Abnormalities in Infancy. Pediatr. Int. 2003, 45, 142–149. DOI: 10.1046/j.1442-200X.2003.01681.x.
  • Chang, L.; Zhou, G.; Soufan, O.; Xia, J. MiRNet 2.0: Network-Based Visual Analytics for MiRNA Functional Analysis and Systems Biology. Nucleic Acids Res. 2020, 48, W244–W251. DOI: 10.1093/nar/gkaa467.
  • Pons, P.; Latapy, M. Computing Communities in Large Networks Using Random Walks. JGAA. 2006, 10, 191–218. DOI: 10.7155/jgaa.00124.
  • Piñero, J.; Ramírez-Anguita, J. M.; Saüch-Pitarch, J.; Ronzano, F.; Centeno, E.; Sanz, F.; Furlong, L. I. The DisGeNET Knowledge Platform for Disease Genomics: 2019 Update. Nucleic Acids Res. 2019, 48, D845–D855. DOI: 10.1093/nar/gkz1021.
  • Livak, K. J.; Schmittgen, T. D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods. 2001, 25, 402–408. DOI: 10.1006/meth.2001.1262.
  • https://clincalc.com/stats/Power.aspx.
  • Rosner, B. Fundamentals of Biostatistics, 7th ed.; Brooks/Cole: Boston, 2011.
  • Kriegel, A. J.; Liu, Y.; Fang, Y.; Ding, X.; Liang, M. The MiR-29 Family: Genomics, Cell Biology, and Relevance to Renal and Cardiovascular Injury. Physiol. Genomics. 2012, 44, 237–244. DOI: 10.1152/physiolgenomics.00141.2011.
  • Yang, P.-Y.; Ho, D. C.-Y.; Chen, S.-H.; Hsieh, P.-L.; Liao, Y.-W.; Tsai, L.-L.; Yu, C.-C.; Fang, C.-Y. Down-Regulation of MiR-29c Promotes the Progression of Oral Submucous Fibrosis through Targeting Tropomyosin-1. J. Formos. Med. Assoc. 2022, 121, 1117–1122. DOI: 10.1016/j.jfma.2021.10.006.
  • Wang, B.; Komers, R.; Carew, R.; Winbanks, C. E.; Xu, B.; Herman-Edelstein, M.; Koh, P.; Thomas, M.; Jandeleit-Dahm, K.; Gregorevic, P.; et al. Suppression of MicroRNA-29 Expression by TGF-β 1 Promotes Collagen Expression and Renal Fibrosis. J. Am. Soc. Nephrol. 2012, 23, 252–265. DOI: 10.1681/ASN.2011010055.
  • Huang, H.; Huang, X.; Luo, S.; Zhang, H.; Hu, F.; Chen, R.; Huang, C.; Su, Z. The MicroRNA MiR-29c Alleviates Renal Fibrosis via TPM1-Mediated Suppression of the Wnt/β-Catenin Pathway. Front. Physiol. 2020, 11, 331. DOI: 10.3389/fphys.2020.00331.
  • Morozova, O.; Morozov, D.; Pervouchine, D.; Einav, Y.; Lakomova, D.; Zakharova, N.; Severgina, L.; Maltseva, L.; Budnik, I. Urinary Biomarkers of Latent Inflammation and Fibrosis in Children with Vesicoureteral Reflux. Int. Urol. Nephrol. 2020, 52, 603–610. DOI: 10.1007/s11255-019-02357-1.
  • van Rooij, E.; Sutherland, L. B.; Thatcher, J. E.; DiMaio, J. M.; Naseem, R. H.; Marshall, W. S.; Hill, J. A.; Olson, E. N. Dysregulation of MicroRNAs after Myocardial Infarction Reveals a Role of MiR-29 in Cardiac Fibrosis. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 13027–13032. DOI: 10.1073/pnas.0805038105.
  • Herrera, J.; Henke, C. A.; Bitterman, P. B. Extracellular Matrix as a Driver of Progressive Fibrosis. J. Clin. Invest. 2018, 128, 45–53. DOI: 10.1172/JCI93557.
  • Cai, J.; Yin, G.; Lin, B.; Wang, X.; Liu, X.; Chen, X.; Yan, D.; Shan, G.; Qu, J.; Wu, S. Roles of NFκB-MiR-29s-MMP-2 Circuitry in Experimental Choroidal Neovascularization. J Neuroinflammation. 2014, 11, 88. DOI: 10.1186/1742-2094-11-88.
  • Tao, H.; Chen, Z.-W.; Yang, J.-J.; Shi, K.-H. MicroRNA-29a Suppresses Cardiac Fibroblasts Proliferation via Targeting VEGF-A/MAPK Signal Pathway. Int. J. Biol. Macromol. 2016, 88, 414–423. DOI: 10.1016/j.ijbiomac.2016.04.010.
  • Xue, Y.; Fan, X.; Yang, R.; Jiao, Y.; Li, Y. MiR-29b-3p Inhibits Post-Infarct Cardiac Fibrosis by Targeting FOS. Biosci. Rep. 2020, 40, BSR20201227. DOI: 10.1042/BSR20201227.
  • Shaulian, E.; Karin, M. AP-1 as a Regulator of Cell Life and Death. Nat. Cell. Biol. 2002, 4, E131–E136. DOI: 10.1038/ncb0502-e131.
  • Bergman, M. R.; Cheng, S.; Honbo, N.; Piacentini, L.; Karliner, J. S.; Lovett, D. H. A Functional Activating Protein 1 (AP-1) Site Regulates Matrix Metalloproteinase 2 (MMP-2) Transcription by Cardiac Cells through Interactions with JunB-Fra1 and JunB-FosB Heterodimers. Biochem J. 2003, 369, 485–496. DOI: 10.1042/bj20020707.
  • Mauviel, A.; Chung, K.-Y.; Agarwal, A.; Tamai, K.; Uitto, J. Cell-Specific Induction of Distinct Oncogenes of the Jun Family is Responsible for Differential Regulation of Collagenase Gene Expression by Transforming Growth Factor-β in Fibroblasts and Keratinocytes. J. Biol. Chem. 1996, 271, 10917–10923. DOI: 10.1074/jbc.271.18.10917.
  • Wu, H.; Zhang, W.; Wu, Z.; Liu, Y.; Shi, Y.; Gong, J.; Shen, W.; Liu, C. MiR-29c-3p Regulates DNMT3B and LATS1 Methylation to Inhibit Tumor Progression in Hepatocellular Carcinoma. Cell Death Dis. 2019, 10, 48. DOI: 10.1038/s41419-018-1281-7.
  • Stanković, A. Global DNA Methylation as a Potential Underlying Mechanism of Congenital Disease Development. In DNA Methylation Mechanism; IntechOpen: London, 2020. DOI: 10.5772/intechopen.90996.
  • Tu, X.; Zhang, H.; Zhang, J.; Zhao, S.; Zheng, X.; Zhang, Z.; Zhu, J.; Chen, J.; Dong, L.; Zang, Y.; et al. MicroRNA-101 Suppresses Liver Fibrosis by Targeting the TGFβ Signalling Pathway. J. Pathol. 2014, 234, 46–59. DOI: 10.1002/path.4373.
  • Huang, C.; Xiao, X.; Yang, Y.; Mishra, A.; Liang, Y.; Zeng, X.; Yang, X.; Xu, D.; Blackburn, M. R.; Henke, C. A.; et al. MicroRNA-101 Attenuates Pulmonary Fibrosis by Inhibiting Fibroblast Proliferation and Activation. J. Biol. Chem. 2017, 292, 16420–16439. DOI: 10.1074/jbc.M117.805747.
  • Wang, Q.; Tao, Y.; Xie, H.; Liu, C.; Liu, P. MicroRNA‑101 Inhibits Renal Tubular Epithelial‑to‑Mesenchymal Transition by Targeting TGF‑β1 Type I Receptor. Int. J. Mol. Med. 2021, 47, 119. DOI: 10.3892/ijmm.2021.4952.
  • Djuric, T.; Zivkovic, M.; Milosevic, B.; Andjelevski, M.; Cvetkovic, M.; Kostic, M.; Stankovic, A. MMP-1 and -3 Haplotype is Associated with Congenital Anomalies of the Kidney and Urinary Tract. Pediatr. Nephrol. 2014, 29, 879–884. DOI: 10.1007/s00467-013-2699-x.
  • Lv, L.-L.; Cao, Y.-H.; Ni, H.-F.; Xu, M.; Liu, D.; Liu, H.; Chen, P.-S.; Liu, B.-C. MicroRNA-29c in Urinary Exosome/Microvesicle as a Biomarker of Renal Fibrosis. Am. J. Physiol. Renal. Physiol. 2013, 305, F1220–F1227. DOI: 10.1152/ajprenal.00148.2013.
  • Wang, J.; Lee, C. J.; Deci, M. B.; Jasiewicz, N.; Verma, A.; Canty, J. M.; Nguyen, J. MiR-101a Loaded Extracellular Nanovesicles as Bioactive Carriers for Cardiac Repair. Nanomedicine. 2020, 27, 102201. DOI: 10.1016/j.nano.2020.102201.
  • Rupaimoole, R.; Slack, F. J. MicroRNA Therapeutics: Towards a New Era for the Management of Cancer and Other Diseases. Nat. Rev. Drug Discov. 2017, 16, 203–222. DOI: 10.1038/nrd.2016.246.
  • Chakraborty, C.; Sharma, A. R.; Sharma, G.; Doss, C. G. P.; Lee, S.-S. Therapeutic MiRNA and SiRNA: Moving from Bench to Clinic as Next Generation Medicine. Mol. Ther. Nucleic Acids. 2017, 8, 132–143. DOI: 10.1016/j.omtn.2017.06.005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.