0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

LncRNA GABPB1-AS1 is a potential target for the diagnosis of prostate cancer

, , , , &
Received 27 Mar 2024, Accepted 20 Jun 2024, Published online: 14 Jul 2024

References

  • Pan, Y.; Yu, H.; Lu, F. TRIM11 Posttranscriptionally Modulated by miR-5193 Facilitates Tumor Growth and Metastasis of Prostate Cancer. Technol Cancer Res. Treat. 2023, 22, 15330338231178639. DOI: 10.1177/15330338231178639.
  • Ma, X. Y.; Xu, H. Q.; Zhao, J. F.; Ruan, Y.; Chen, B. Discovery of a Novel Bloom’s Syndrome Protein (BLM) Inhibitor Suppressing Growth and Metastasis of Prostate Cancer. Int. J. Mol. Sci. 2022, 23, 14798. DOI: 10.3390/ijms232314798.
  • Tsai, C. C.; Yang, Y. S. H.; Chen, Y. F.; Huang, L. Y.; Yang, Y. N.; Lee, S. Y.; Wang, W. L.; Lee, H. L.; Whang-Peng, J.; Lin, H. Y.; et al. Integrins and Actions of Androgen in Breast Cancer. Cells 2023, 12, 2126. DOI: 10.3390/cells12172126.
  • Kobayashi, T.; Hachiya, T.; Ikehata, Y.; Horie, S. Genetic Association of Mosaic Loss of Chromosome Y with Prostate Cancer in Men of European and East Asian Ancestries: A Mendelian Randomization Study. Front. Aging 2023, 4, 1176451. DOI: 10.3389/fragi.2023.1176451.
  • Wang, H.; Shi, W.; Lu, J.; Liu, Y.; Zhou, W.; Yu, Z.; Qin, S.; Fan, J. HCC: RNA-Sequencing in Cirrhosis. Biomolecules 2023, 13, 141. DOI: 10.3390/biom13010141.
  • Tan, Y. T.; Lin, J. F.; Li, T.; Li, J. J.; Xu, R. H.; Ju, H. Q. LncRNA-Mediated Posttranslational Modifications and Reprogramming of Energy Metabolism in Cancer. Cancer Commun. (Lond) 2021, 41, 109–120. DOI: 10.1002/cac2.12108.
  • Mao, Y.; Chen, W.; Wu, H.; Liu, C.; Zhang, J.; Chen, S. Mechanisms and Functions of MiR-200 Family in Hepatocellular Carcinoma. Oncol. Targets Ther. 2020, 13, 13479–13490. DOI: 10.2147/OTT.S288791.
  • Chen, B.; Xu, K.; Zhang, Y.; Xu, P.; Li, C.; Liu, J.; Xu, Y. LncRNA ERVH48-1 Contributes to the Drug Resistance of Prostate Cancer and Proliferation through Sponging of miR-4784 to the Activation of the Wnt/β-Catenin Pathway. Cancers (Basel) 2023, 15, 1902. DOI: 10.3390/cancers15061902.
  • Yang, S.; Guan, H.; Chen, Z.; Wang, S.; Wu, H.; Li, Q. LncRNA HOXA11-AS Modulates the miR-148b-3p/MLPH Axis to Promote Prostate Cancer Cell Proliferation. Cell Mol. Biol. (Noisy-le-Grand) 2023, 69, 92–97. DOI: 10.14715/cmb/2023.69.3.12.
  • Sun, T.; Dong, L.; Guo, Y.; Zhao, H.; Wang, M. Revealing Key lncRNAs in Cytogenetically Normal Acute Myeloid Leukemia by Reconstruction of the lncRNA-miRNA-mRNA Network. Sci. Rep. 2022, 12, 4973. DOI: 10.1038/s41598-022-08930-6.
  • Lv, H.; Lai, C.; Zhao, W.; Song, Y. GABPB1-AS1 Acts as a Tumor Suppressor and Inhibits Non-Small Cell Lung Cancer Progression by Targeting miRNA-566/F-Box Protein 47. Oncol. Res. 2021, 29, 401–409. DOI: 10.32604/or.2022.025262.
  • Luan, F.; Chen, W.; Chen, M.; Yan, J.; Chen, H.; Yu, H.; Liu, T.; Mo, L. An Autophagy-Related Long Non-Coding RNA Signature for Glioma. FEBS Open Bio 2019, 9, 653–667. DOI: 10.1002/2211-5463.12601.
  • Ghafouri-Fard, S.; Hussen, B. M.; Shaterabadi, D.; Abak, A.; Shoorei, H.; Taheri, M.; Rakhshan, A. The Interaction between Human Papilloma Viruses Related Cancers and Non-Coding RNAs. Pathol. Res. Pract. 2022, 234, 153939. DOI: 10.1016/j.prp.2022.153939.
  • Alkhateeb, A.; Rezaeian, I.; Singireddy, S.; Cavallo-Medved, D.; Porter, L. A.; Rueda, L. Transcriptomics Signature from Next-Generation Sequencing Data Reveals New Transcriptomic Biomarkers Related to Prostate Cancer. Cancer Inform. 2019, 18, 1176935119835522. DOI: 10.1177/1176935119835522.
  • Huang, S.; Liao, Q.; Li, W.; Deng, G.; Jia, M.; Fang, Q.; Ji, H.; Meng, M. The lncRNA PTTG3P Promotes the Progression of CRPC via Upregulating PTTG1. Bull Cancer 2021, 108, 359–368. DOI: 10.1016/j.bulcan.2020.11.022.
  • Yao, Y.; Chen, X.; Wang, X.; Li, H.; Zhu, Y.; Li, X.; Xiao, Z.; Zi, T.; Qin, X.; Zhao, Y.; et al. Glycolysis Related lncRNA SNHG3/miR-139-5p/PKM2 Axis Promotes Castration-Resistant Prostate Cancer (CRPC) Development and Enzalutamide Resistance. Int. J. Biol Macromol. 2024, 260, 129635. DOI: 10.1016/j.ijbiomac.2024.129635.
  • Chen, J.; Bian, M.; Pan, L.; Liu, C.; Yang, H. GABPB1-AS1 Promotes the Development of Osteosarcoma by Targeting SP1 and Activating the Wnt/β-Catenin Pathway. J. Oncol. 2022, 2022, 8468896. DOI: 10.1155/2022/8468896.
  • Ou, R.; Lv, M.; Liu, X.; Lv, J.; Zhao, J.; Zhao, Y.; Li, X.; Li, W.; Zhao, L.; Li, J.; et al. HPV16 E6 Oncoprotein-Induced Upregulation of lncRNA GABPB1-AS1 Facilitates Cervical Cancer Progression by Regulating miR-519e-5p/Notch2 Axis. Faseb J. 2020, 34, 13211–13223. DOI: 10.1096/fj.202000762R.
  • Li, B.; Xing, J.; Wang, Z.; Gong, Z.; Wang, Z.; Xu, A. Development and Validation of Two Nomograms for Predicting Overall Survival and Cancer-Specific Survival in Prostate Cancer Patients with Bone Metastases: A Population-Based Study. BMC Urol. 2023, 23, 200. DOI: 10.1186/s12894-023-01372-w.
  • Stoczynska-Fidelus, E.; Węgierska, M.; Kierasińska, A.; Ciunowicz, D.; Rieske, P. Role of Senescence in Tumorigenesis and Anticancer Therapy. J. Oncol. 2022, 2022, 5969536–5969523. DOI: 10.1155/2022/5969536.
  • Dar, T. U. H.; Dar, S. A.; Islam, S. U.; Mangral, Z. A.; Dar, R.; Singh, B. P.; Verma, P.; Haque, S. Lichens as a Repository of Bioactive Compounds: An Open Window for Green Therapy against Diverse Cancers. Semin. Cancer Biol. 2022, 86, 1120–1137. DOI: 10.1016/j.semcancer.2021.05.028.
  • Tang, W.; Zhu, S.; Liang, X.; Liu, C.; Song, L. The Crosstalk Between Long Non-Coding RNAs and Various Types of Death in Cancer Cells. Technol. Cancer Res. Treat. 2021, 20, 15330338211033044. DOI: 10.1177/15330338211033044.
  • Zhuo, C.; Yi, T.; Pu, J.; Cen, X.; Zhou, Y.; Feng, S.; Wei, C.; Chen, P.; Wang, W.; Bao, C.; et al. Exosomal linc-FAM138B from Cancer Cells Alleviates Hepatocellular Carcinoma Progression via Regulating miR-765. Aging (Albany NY)). 2020, 12, 26236–26247. DOI: 10.18632/aging.202430.
  • Xu, G.; Yang, Z.; Sun, Y.; Dong, H.; Ma, J. Interaction of microRNAs with Sphingosine Kinases, Sphingosine-1 Phosphate, and Sphingosine-1 Phosphate Receptors in Cancer. Discov. Oncol. 2021, 12, 33. DOI: 10.1007/s12672-021-00430-9.
  • Shan, E.; Yu, Y.; Tang, W.; Wang, W.; Wang, X.; Zhou, S.; Gao, Y. miR-330-3p Alleviates the Progression of Atherosclerosis by Downregulating AQP9. Funct. Integr. Genomics 2023, 23, 77. DOI: 10.1007/s10142-023-01001-7.
  • Cai, L.; Ye, L.; Hu, X.; He, W.; Zhuang, D.; Guo, Q.; Shu, K.; Jie, Y. MicroRNA miR-330-3p Suppresses the Progression of Ovarian Cancer by Targeting RIPK4. Bioengineered 2021, 12, 440–449. DOI: 10.1080/21655979.2021.1871817.
  • Tang, M.; Wang, F.; Wang, K.; Jiang, Y.; Wang, Q. Circ_0058063 Promotes Progression of Thyroid Cancer by Sponging miR-330-3p/SDC4 Axis. Anticancer Drugs 2022, 33, 642–651. DOI: 10.1097/CAD.0000000000001307.
  • Mi, Y.; Zhang, L.; Sun, C.; Feng, Y.; Sun, J.; Wang, J.; Yang, D.; Qi, X.; Wan, H.; Xia, G.; et al. Lysine Demethylase 5A Promotes Prostate Adenocarcinoma Progression by Suppressing microRNA-330-3p Expression and Activating the COPB2/PI3K/AKT Axis in an ETS1-Dependent Manner. J. Cell Commun. Signal 2022, 16, 579–599. DOI: 10.1007/s12079-022-00671-5.
  • Li, Q.; Wang, W.; Zhang, M.; Sun, W.; Shi, W.; Li, F. Circular RNA Circ-0016068 Promotes the Growth, Migration, and Invasion of Prostate Cancer Cells by Regulating the miR-330-3p/BMI-1 Axis as a Competing Endogenous RNA. Front Cell Dev Biol 2020, 8, 827. DOI: 10.3389/fcell.2020.00827.
  • Ding, Y.; Wang, M.; Yang, J. Circular RNA Midline-1 (circMID1) Promotes Proliferation, Migration, Invasion and Glycolysis in Prostate Cancer. Bioengineered 2022, 13, 6293–6308. DOI: 10.1080/21655979.2022.2037367.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.