0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Prognostic significance of copper metabolism-related genes as risk markers in bladder urothelial carcinoma

, , , , , & show all
Received 14 Sep 2023, Accepted 29 Jul 2024, Published online: 09 Aug 2024

References

  • Siegel, R. L.; Miller, K. D.; Wagle, N. S.; Jemal, A. Cancer Statistics, 2023. CA. Cancer J. Clin. 2023, 73, 17–48. DOI: 10.3322/caac.21763.
  • Rouprêt, M.; Babjuk, M.; Burger, M.; Capoun, O.; Cohen, D.; Compérat, E. M.; Cowan, N. C.; Dominguez-Escrig, J. L.; Gontero, P.; Hugh Mostafid, A.; et al. European Association of Urology Guidelines on Upper Urinary Tract Urothelial Carcinoma: 2020 Update. Eur. Urol. 2021, 79, 62–79. DOI: 10.1016/j.eururo.2020.05.042.
  • Abufaraj, M.; Al-Ani, A.; AlQudah, A.; Shariat, S. F. Surgical Intervention in Patients with Urothelial Carcinoma of the Bladder and Lymph Node Metastasis. Curr. Opin. Urol. 2021, 31, 220–225. DOI: 10.1097/MOU.0000000000000866.
  • Lobo, N.; Afferi, L.; Moschini, M.; Mostafid, H.; Porten, S.; Psutka, S. P.; Gupta, S.; Smith, A. B.; Williams, S. B.; Lotan, Y. Epidemiology, Screening, and Prevention of Bladder Cancer. Eur. Urol. Oncol. 2022, 5, 628–639. DOI: 10.1016/j.euo.2022.10.003.
  • Halaseh, S. A.; Halaseh, S.; Alali, Y.; Ashour, M. E.; Alharayzah, M. J. A Review of the Etiology and Epidemiology of Bladder Cancer: All You Need To Know. Cureus 2022, 14, e27330. From NLM PubMed-not-MEDLINE. DOI: 10.7759/cureus.27330.
  • Mitra, A. P.; Daneshmand, S. Molecular Prognostication in Bladder Cancer. Cancer Treat. Res. 2018, 175, 165–191. DOI: 10.1007/978-3-319-93339-9_8.
  • Xu, N.; Yao, Z.; Shang, G.; Ye, D.; Wang, H.; Zhang, H.; Qu, Y.; Xu, F.; Wang, Y.; Qin, Z.; et al. Integrated Proteogenomic Characterization of Urothelial Carcinoma of the Bladder. J. Hematol. Oncol. 2022, 15, 76. DOI: 10.1186/s13045-022-01291-7.
  • Chen, L.; Min, J.; Wang, F. Copper Homeostasis and Cuproptosis in Health and Disease. Signal Transduct. Target. Ther. 2022, 7, 378. DOI: 10.1038/s41392-022-01229-y.
  • Nevitt, T.; Ohrvik, H.; Thiele, D. J. Charting the Travels of Copper in Eukaryotes from Yeast to Mammals. Biochim. Biophys. Acta. 2012, 1823, 1580–1593. DOI: 10.1016/j.bbamcr.2012.02.011.
  • Ge, E. J.; Bush, A. I.; Casini, A.; Cobine, P. A.; Cross, J. R.; DeNicola, G. M.; Dou, Q. P.; Franz, K. J.; Gohil, V. M.; Gupta, S.; et al. Connecting Copper and Cancer: From Transition Metal Signalling to Metalloplasia. Nat. Rev. Cancer 2022, 22, 102–113. DOI: 10.1038/s41568-021-00417-2.
  • Mao, S.; Huang, S. Zinc and Copper Levels in Bladder Cancer: A Systematic Review and Meta-Analysis. Biol. Trace Elem. Res. 2013, 153, 5–10. DOI: 10.1007/s12011-013-9682-z.
  • Tsang, T.; Posimo, J. M.; Gudiel, A. A.; Cicchini, M.; Feldser, D. M.; Brady, D. C. Copper is an Essential Regulator of the Autophagic Kinases ULK1/2 to Drive Lung Adenocarcinoma. Nat. Cell Biol. 2020, 22, 412–424. DOI: 10.1038/s41556-020-0481-4.
  • Guo, J.; Cheng, J.; Zheng, N.; Zhang, X.; Dai, X.; Zhang, L.; Hu, C.; Wu, X.; Jiang, Q.; Wu, D.; et al. Copper Promotes Tumorigenesis by Activating the PDK1-AKT Oncogenic Pathway in a Copper Transporter 1 Dependent Manner. Adv. Sci. (Weinh) 2021, 8, e2004303. DOI: 10.1002/advs.202004303.
  • Guo, B.; Yang, F.; Zhang, L.; Zhao, Q.; Wang, W.; Yin, L.; Chen, D.; Wang, M.; Han, S.; Xiao, H.; et al. Cuproptosis Induced by ROS Responsive Nanoparticles with Elesclomol and Copper Combined with alphaPD-L1 for Enhanced Cancer Immunotherapy. Adv. Mater. 2023, 35, e2212267. DOI: 10.1002/adma.202212267.
  • Zhao, S.; Zhang, X.; Gao, F.; Chi, H.; Zhang, J.; Xia, Z.; Cheng, C.; Liu, J. Identification of Copper Metabolism-Related Subtypes and Establishment of the Prognostic Model in Ovarian Cancer. Front. Endocrinol. (Lausanne) 2023, 14, 1145797. DOI: 10.3389/fendo.2023.1145797.
  • Tian, R.; Wang, L.; Zou, H.; Song, M.; Liu, L.; Zhang, H. Role of the XIST-miR-181a-COL4A1 Axis in the Development and Progression of Keratoconus. Mol. Vis. 2020, 26, 1–13.
  • Blanche, P.; Dartigues, J. F.; Jacqmin-Gadda, H. Estimating and Comparing Time-Dependent Areas under Receiver Operating Characteristic Curves for Censored Event Times with Competing Risks. Stat. Med. 2013, 32, 5381–5397. DOI: 10.1002/sim.5958.
  • Huang, C.; Liu, Z.; Xiao, L.; Xia, Y.; Huang, J.; Luo, H.; Zong, Z.; Zhu, Z. Clinical Significance of Serum CA125, CA19-9, CA72-4, and Fibrinogen-to-Lymphocyte Ratio in Gastric Cancer With Peritoneal Dissemination. Front. Oncol. 2019, 9, 1159. DOI: 10.3389/fonc.2019.01159.
  • Chen, C.; Li, Y.; Miao, P.; Xu, Y.; Xie, Y.; Chen, Z.; Qian, S. Tumor Immune Cell Infiltration Score Based Model Predicts Prognosis in Multiple Myeloma. Sci. Rep. 2022, 12, 17082. DOI: 10.1038/s41598-022-21763-7.
  • Charoentong, P.; Finotello, F.; Angelova, M.; Mayer, C.; Efremova, M.; Rieder, D.; Hackl, H.; Trajanoski, Z. Pan-Cancer Immunogenomic Analyses Reveal Genotype-Immunophenotype Relationships and Predictors of Response to Checkpoint Blockade. Cell Rep. 2017, 18, 248–262. DOI: 10.1016/j.celrep.2016.12.019.
  • Jiang, P.; Gu, S.; Pan, D.; Fu, J.; Sahu, A.; Hu, X.; Li, Z.; Traugh, N.; Bu, X.; Li, B.; et al. Signatures of T Cell Dysfunction and Exclusion Predict Cancer Immunotherapy Response. Nat. Med. 2018, 24, 1550–1558. DOI: 10.1038/s41591-018-0136-1.
  • Robinson, M. D.; McCarthy, D. J.; Smyth, G. K. edgeR: A Bioconductor Package for Differential Expression Analysis of Digital Gene Expression Data. Bioinformatics 2010, 26, 139–140. DOI: 10.1093/bioinformatics/btp616.
  • Yu, G.; Wang, L. G.; Han, Y.; He, Q. Y. clusterProfiler: An R Package for Comparing Biological Themes among Gene Clusters. OMICS. 2012, 16, 284–287. DOI: 10.1089/omi.2011.0118.
  • Hou, J.; Lu, Z.; Liu, X.; Luo, B.; Qu, G.; Xu, Y.; Tang, C. Increased NUSAP1 Expression is Associated with Lymph Node Metastasis and Survival Prognosis in Bladder Urothelial Carcinoma. Sci. Rep. 2022, 12, 7003. DOI: 10.1038/s41598-022-11137-4.
  • Deng, M.; Wei, W.; Duan, J.; Chen, R.; Wang, N.; He, L.; Peng, Y.; Ma, X.; Wu, Z.; Liu, J.; et al. ZHX3 Promotes the Progression of Urothelial Carcinoma of the Bladder via Repressing of RGS2 and is a Novel Substrate of TRIM21. Cancer Sci. 2021, 112, 1758–1771. DOI: 10.1111/cas.14810.
  • Shanbhag, V. C.; Gudekar, N.; Jasmer, K.; Papageorgiou, C.; Singh, K.; Petris, M. J. Copper Metabolism as a Unique Vulnerability in Cancer. Biochim. Biophys. Acta. Mol. Cell Res. 2021, 1868, 118893. DOI: 10.1016/j.bbamcr.2020.118893.
  • Zheng, P.; Zhou, C.; Lu, L.; Liu, B.; Ding, Y. Elesclomol: A Copper Ionophore Targeting Mitochondrial Metabolism for Cancer Therapy. J. Exp. Clin. Cancer Res. 2022, 41, 271. DOI: 10.1186/s13046-022-02485-0.
  • Lutsenko, S. Dynamic and Cell-Specific Transport Networks for Intracellular Copper Ions. J. Cell Sci. 2021, 134, DOI: 10.1242/jcs.240523.
  • Kilari, D.; Iczkowski, K. A.; Pandya, C.; Robin, A. J.; Messing, E. M.; Guancial, E.; Kim, E. S. Copper Transporter-CTR1 Expression and Pathological Outcomes in Platinum-Treated Muscle-Invasive Bladder Cancer Patients. Anticancer Res. 2016, 36, 495–501.
  • Lu, F.; Chen, S.; Shi, W.; Su, X.; Wu, H.; Liu, M. GPC1 Promotes the Growth and Migration of Colorectal Cancer Cells through Regulating the TGF-beta1/SMAD2 Signaling Pathway. PLoS One. 2022, 17, e0269094. DOI: 10.1371/journal.pone.0269094.
  • Pan, J.; Li, N.; Renn, A.; Zhu, H.; Chen, L.; Shen, M.; Hall, M. D.; Qian, M.; Pastan, I.; Ho, M. GPC1-Targeted Immunotoxins Inhibit Pancreatic Tumor Growth in Mice via Depletion of Short-Lived GPC1 and Downregulation of Wnt Signaling. Mol. Cancer Ther. 2022, 21, 960–973. DOI: 10.1158/1535-7163.MCT-21-0778.
  • Cheng, F.; Hansson, V. C.; Georgolopoulos, G.; Mani, K. Attenuation of Cancer Proliferation by Suppression of Glypican-1 and Its Pleiotropic Effects in Neoplastic Behavior. Oncotarget 2023, 14, 219–235. DOI: 10.18632/oncotarget.28388.
  • Xin, X.; Mains, R. E.; Eipper, B. A. Monooxygenase X, a Member of the Copper-Dependent Monooxygenase Family Localized to the Endoplasmic Reticulum. J. Biol. Chem. 2004, 279, 48159–48167. DOI: 10.1074/jbc.M407486200.
  • Wang, W.; Hua, S.; Li, J.; Zhao, J.; Zhang, Y.; Jiang, J.; Han, B. Tumour Microenvironment Landscape and Immunotherapy Response in Bladder Cancer Decoded by Stromal MOXD1 Based on Copper-Related Genes Signature. Front. Oncol. 2022, 12, 1081091. DOI: 10.3389/fonc.2022.1081091.
  • Liu, J.; Shao, T.; Zhang, J.; Liu, Q.; Hua, H.; Zhang, H.; Wang, J.; Luo, T.; Shi, Y. E.; Jiang, Y. Gamma Synuclein Promotes Cancer Metastasis through the MKK3/6-p38MAPK Cascade. Int. J. Biol. Sci. 2022, 18, 3167–3177. DOI: 10.7150/ijbs.69155.
  • Chen, Z.; Zhang, F.; Zhang, S.; Ma, L. The down-Regulation of SNCG Inhibits the Proliferation and Invasiveness of Human Bladder Cancer Cell Line 5637 and Suppresses the Expression of MMP-2/9. Int. J. Clin. Exp. Pathol. 2020, 13, 1873–1879.
  • Shao, T.; Song, P.; Hua, H.; Zhang, H.; Sun, X.; Kong, Q.; Wang, J.; Luo, T.; Jiang, Y. Gamma Synuclein is a Novel Twist1 Target That Promotes TGF-Beta-Induced Cancer Cell Migration and Invasion. Cell Death Dis. 2018, 9, 625. DOI: 10.1038/s41419-018-0657-z.
  • Zhang, J.; Liu, X. H.; Li, C.; Wu, X. X.; Chen, Y. L.; Li, W. W.; Li, X.; Gong, F.; Tang, Q.; Jiang, D. SNCG Promotes the Progression and Metastasis of High-Grade Serous Ovarian Cancer via Targeting the PI3K/AKT Signaling Pathway. J. Exp. Clin. Cancer Res. 2020, 39, 79. DOI: 10.1186/s13046-020-01589-9.
  • Soukup, V.; Kalousová, M.; Capoun, O.; Sobotka, R.; Breyl, Z.; Pešl, M.; Zima, T.; Hanuš, T. Panel of Urinary Diagnostic Markers for Non-Invasive Detection of Primary and Recurrent Urothelial Urinary Bladder Carcinoma. Urol. Int. 2015, 95, 56–64. DOI: 10.1159/000368166.
  • Kumar, P.; Nandi, S.; Tan, T. Z.; Ler, S. G.; Chia, K. S.; Lim, W.-Y.; Bütow, Z.; Vordos, D.; De la Taille, A.; Al-Haddawi, M.; et al. Highly Sensitive and Specific Novel Biomarkers for the Diagnosis of Transitional Bladder Carcinoma. Oncotarget 2015, 6, 13539–13549. DOI: 10.18632/oncotarget.3841.
  • Stiburek, L.; Vesela, K.; Hansikova, H.; Hulkova, H.; Zeman, J. Loss of Function of Sco1 and Its Interaction with Cytochrome c Oxidase. Am. J. Physiol. Cell Physiol. 2009, 296, C1218–1226. DOI: 10.1152/ajpcell.00564.2008.
  • Madan, E.; Gogna, R.; Kuppusamy, P.; Bhatt, M.; Mahdi, A. A.; Pati, U. SCO2 Induces p53-Mediated Apoptosis by Thr845 Phosphorylation of ASK-1 and Dissociation of the ASK-1-Trx Complex. Mol. Cell. Biol. 2013, 33, 1285–1302. DOI: 10.1128/MCB.06798-11.
  • Xiao, Y.; Yu, D. Tumor Microenvironment as a Therapeutic Target in Cancer. Pharmacol. Ther. 2021, 221, 107753. DOI: 10.1016/j.pharmthera.2020.107753.
  • Faraj, S. F.; Munari, E.; Guner, G.; Taube, J.; Anders, R.; Hicks, J.; Meeker, A.; Schoenberg, M.; Bivalacqua, T.; Drake, C.; et al. Assessment of Tumoral PD-L1 Expression and Intratumoral CD8+ T Cells in Urothelial Carcinoma. Urology 2015, 85, 703 e701–703.e6. DOI: 10.1016/j.urology.2014.10.020.
  • Koll, F. J.; Banek, S.; Kluth, L.; Köllermann, J.; Bankov, K.; Chun, F. K.-H.; Wild, P. J.; Weigert, A.; Reis, H. Tumor-Associated Macrophages and Tregs Influence and Represent Immune Cell Infiltration of Muscle-Invasive Bladder Cancer and Predict Prognosis. J. Transl. Med. 2023, 21, 124. DOI: 10.1186/s12967-023-03949-3.
  • Ness, S.; Lin, S.; Gordon, J. R. Regulatory Dendritic Cells, T Cell Tolerance, and Dendritic Cell Therapy for Immunologic Disease. Front. Immunol. 2021, 12, 633436. DOI: 10.3389/fimmu.2021.633436.
  • Walker, C.; Mojares, E.; Del Río Hernández, A. Role of Extracellular Matrix in Development and Cancer Progression. Int. J. Mol. Sci. 2018, 19, 3028. DOI: 10.3390/ijms19103028.
  • Pickup, M. W.; Mouw, J. K.; Weaver, V. M. The Extracellular Matrix Modulates the Hallmarks of Cancer. EMBO Rep. 2014, 15, 1243–1253. DOI: 10.15252/embr.201439246.
  • McConkey, D. J.; Choi, W.; Marquis, L.; Martin, F.; Williams, M. B.; Shah, J.; Svatek, R.; Das, A.; Adam, L.; Kamat, A.; et al. Role of Epithelial-to-Mesenchymal Transition (EMT) in Drug Sensitivity and Metastasis in Bladder Cancer. Cancer Metastasis Rev. 2009, 28, 335–344. DOI: 10.1007/s10555-009-9194-7.
  • Deb, B.; Patel, K.; Sathe, G.; Kumar, P. N-Glycoproteomic Profiling Reveals Alteration In Extracellular Matrix Organization In Non-Type Bladder Carcinoma. J. Clin. Med. 2019, 8, 1303. DOI: 10.3390/jcm8091303.
  • Jafari, M.; Ghadami, E.; Dadkhah, T.; Akhavan-Niaki, H. PI3k/AKT Signaling Pathway: Erythropoiesis and beyond. J. Cell. Physiol. 2019, 234, 2373–2385. DOI: 10.1002/jcp.27262.
  • Yu, L.; Wei, J.; Liu, P. Attacking the PI3K/Akt/mTOR Signaling Pathway for Targeted Therapeutic Treatment in Human Cancer. Semin. Cancer Biol. 2022, 85, 69–94. DOI: 10.1016/j.semcancer.2021.06.019.
  • Yao, J.; Qian, K.; Chen, C.; Liu, X.; Yu, D.; Yan, X.; Liu, T.; Li, S. ZNF139/circZNF139 Promotes Cell Proliferation, Migration and Invasion via Activation of PI3K/AKT Pathway in Bladder Cancer. Aging (Albany NY) 2020, 12, 9915–9934. DOI: 10.18632/aging.103256.
  • Chi, M.; Liu, J.; Mei, C.; Shi, Y.; Liu, N.; Jiang, X.; Liu, C.; Xue, N.; Hong, H.; Xie, J.; et al. TEAD4 Functions as a Prognostic Biomarker and Triggers EMT via PI3K/AKT Pathway in Bladder Cancer. J. Exp. Clin. Cancer Res. 2022, 41, 175. DOI: 10.1186/s13046-022-02377-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.