281
Views
2
CrossRef citations to date
0
Altmetric
Scientific Communications

Epiphytic microalgae as biological indicators for carbon monoxide concentrations in different areas of Peninsular Malaysia

, , , , , , & ORCID Icon show all

References

  • Abas, A., and Awang, A. 2017. Air pollution assessments using lichen biodiversity index (LBI) in Kuala Lumpur. Malaysia. Pollution Research 36(2):242–249.
  • Abas, A., Awang, A., and Aiyub, K. 2018. Lichen as bio-indicator for air pollution in Klang, Selangor. Pollution Research 37(4):35–39.
  • Abzar, A., Said, M. N. M., Ahmad, W. J. W., Yusoff, W. M. W., Doni, F., Fathurrahman, F., et al. 2017. Elevated CO2 concentration enhance germination, seedling growth and vigor of rice. Ecology, Environment and Conservation 23(3):41–45.
  • Boguski, T. K. 2006. Understanding units of measurement. Center for Hazardous Substance Research (CHSR), Kansas State University.
  • Bosch-Roig, P., Barca, D., Crisci, G. M., and Lalli, C. 2013. Lichens as bioindicators of atmospheric heavy metal deposition in Valencia. Journal of Atmospheric Chemistry 70:373–388.
  • Carvalho, A. P., Silva, S. O., Baptista, J. M., and Malcata, F. X. 2011. Light requirements in microalgal photobioreactors: an overview of biophotonic aspects. Applied Microbiology and Biotechnology 89(5):1275–1288.
  • Coghill, T. G., Kostadinovic, L., Micic, R., Nuhanovic, M., Avdic, P., and Stojnic, M. 2015. Lichens as specific and cost-effective biological indicators of urban carbon monoxide concentration. Fresenius Environmental Bulletin 24(12):4279–4284.
  • Costello, A., Abbas, M., Allen, A., Ball, S., Bell, S., Bellamy, R., et al. 2009. Managing the health effects of climate change: Lancet and University College London Institute for Global Health Commission. Lancet (London, England) 373(9676):1693–1733.
  • Dockery, D. W., Pope, C. A., Xu, X., Spengler, J. D., Ware, J. H., Fay, M. E., et al. 1993. An association between air pollution and mortality in six U.S. cities. The New England Journal of Medicine 329:1753–1759.
  • Dominick, D., Juahir, H., Latif, M. T., Zain, S. M., and Aris, A. Z. 2012. Spatial assessment of air quality patterns in Malaysia using multivariate analysis. Atmospheric Environment 60:172–181.
  • Dominick, D., Latif, M. T., Juneng, L., Khan, M. F., Amil, N., Mead, M. I., et al. 2015. Characterisation of particle mass and number concentration on the east coast of the Malaysian Peninsula during the northeast monsoon. Atmospheric Environment 117:187–199.
  • Dortch, Q. 1990. The interaction between ammonium and nitrate uptake in phytoplankton. Marine Ecology Progress Series 61:183–201.
  • Essilmi, M., Loudiki, M., and Gharmali, A. E. 2019. Study of the lichens of the moroccan atlantic coast Safi-Essaouira: Bioindication of air quality and limiting factors. Applied Ecology and Environmental Research 17(2):4305–4323.
  • Freystein, K., and Reisser, W. 2010. Symbioses and Stress: Green biofilms on tree barks: more than just algae.
  • Freystein, K., Salisch, M., and Reisser, W. 2008. Algal biofilms on tree bark to monitor airborne pollutants. Biologia 63:866–872.
  • Giordani, P. 2006. Variables influencing the distribution of epiphytic lichens in heterogeneous areas: A case study for Liguria, NW Italy. Journal of Vegetation Science 17:195–206.
  • Gorbushina, A. A. 2007. Life on the rocks. Environmental Microbiology 9(7):1613–1631.
  • Huang, Y., Chen, M., and Liu, D. 2008. Effect of nitrogen, phosphor, light and water temperature on the formation and dissappearance of bluegreen algae bloom. Northwest Scientific Association 36(9):93–100.
  • Ismail, A., Mokhtar, N. A., Pardi, F., Ikhsan, N. A. K., Mahiddin, H., Radzun, K. A., and Farinordin, F. A. 2019. 21st PATTAYA International Conference on Agricultural, Environmental and Biological Sciences: Diversity and Species Composition of Epiphytic Terrestrial Algae Exposed to Sulphur Dioxide Emissions Released From Power Plant Station.
  • Jimenez, S., Gonzalez, F. A., and Gelbukh, A. 2016. Mathematical properties of soft cardinality: Enhancing Jaccard, Dice and cosine similarity measures with element-wise distance. Information Sciences 367-368:373–389.
  • Latif, M. T., Dominick, D., Ahmad, F., Khan, M. F., Juneng, L., Hamzah, F. M., et al. 2014. Long term assessment of air quality from a background station on the Malaysian Peninsula. The Science of the Total Environment 482-483:336–348.
  • Marmor, L., and Degtjarenko, P. 2014. Trentepohlia umbrina on Scots pine as a bioindicator of alkaline dust pollution. Ecological Indicators 45:717–720.
  • Massimi, L., Conti, M. E., Mele, G., Ristorini, M., Astolfi, M. L., and Canepari, S. 2019. Lichen transplants as indicators of atmospheric elements concentrations: a high spatial resolution comparison with PM10 samples in a polluted area (Central Italy). Ecological Indicators 101:759–769.
  • Mayer, A. L., Vihermaa, L., Nieminen, N., Luomi, A., and Posch, M. 2009. Epiphytic macrolichen community correlates with modeled air pollutants and forest conditions. Ecological Indicators 9(5):992–1000.
  • Munzi, S., Ravera, S., and Caneva, G. 2007. Epiphytic lichens as indicators of environmental quality in Rome. Environmental Pollution (Barking, Essex : 1987) 146(2):350–358.
  • Nash, T. 2008. Lichen Biology: Lichen Sensitivity to Air Pollution. Cambridge: Cambridge University Press.
  • Neustupa, J., and Skaloud, P. 2008. Diversity of subaerial algae and cyanobacteria on tree bark in tropica mountain habitats. Biological 63(6):806–812.
  • Parmar, T. K., Rawtani, D., and Agrawal, Y. K. 2016. Bioindicators: the natural indicator of environmental pollution. Frontiers in Life Science 9(2):110–118.
  • Prakash, M., Gautom, T., and Sharma, N. 2015. Effect of salinity, pH, light intensity on growth and lipid production of microalgae for bioenergy application. Journal of Biological Sciences 15(4):260–267.
  • Ra, H. S. Y., and Crang, F. E. 2002. Changes in thallus and algal cell components of two lichen species in response to low-level air pollution at Pacific Northest Forests. Microscopy and Microanalysis 8(Suppl. 2):1078–1079.
  • Rajkumar, R., Yaakob, Z., and Takriff, M. S. 2013. Potential of the micro and macro algae for biofuel production: A Brief review. Bioresources 9(1):1606–1633.
  • Riddell, J., Padgett, P. E., and Nash, T. H. 2012. Physiological responses of lichens to factorial fumigations with nitric acid and ozone. Environmental Pollution (Barking, Essex : 1987) 170:202–210.
  • Rindi, F. 2011. Terrestrial green algae: systematics, biogeography and expected responses to climate change. In Climate Change, Ecology and Systematics, eds. Hodkinson, T., Jones, S., Waldren, S., and Parnell, J. Cambridge: Cambridge University Press, 201–227.
  • Rindi, F., Allali, H., Lam, D. W., and Lopez-Bautista, J. M. 2009. An overview of the biodiversity and biogeography of terrestrial green algae. In Biodiversity Hotspot, eds. Rescigno, V., and Maletta, S. New York: Nova Science Publishers, 105–122.
  • Saipunkaew, W., Wolseley, P. A., Chimonides, P. J., and Boonpragob, K. 2007. Epiphytic macrolichens as indicators of environmental alteration in northern Thailand. Environmental Pollution (Barking, Essex : 1987) 146:366–374.
  • Salih, F. M. 2011. Microalgae tolerance to high concentrations of carbon dioxide: a review. Journal of Environmental Protection 2(2):648–654.
  • Stifterova, A., and Neustupa, J. 2015a. Community structure of corticolous microalgae within a single forest stand: evaluating the effects of bark surface pH and three species. Fottea Olomouc 15(2):113–122.
  • Stifterova, A., and Neustupa, J. 2015b. Small-scale variation of corticolous microalgal covers: Effects of microhabitat, season, and space. Phycological Research 65(4):299–311.
  • Veillette, M., Chamoumi, M., Nikiema, J., Faucheux, N., and Heitz, M. 2012. Production of biodiesel from microalgae. In Nawaz, Z. Advanced Chemical Engineering.Intech, Crotia, pp 245–268.
  • Wang, Y., Munger, J. W., Xu, S., McElroy, M. B., Hao, J., Nielsen, C. P., et al. 2010. CO2 and its correlation with CO at a rural site near Beijing: implications for combustion efficiency in China. Atmospheric Chemistry and Physics 10:8881–8897.
  • Wang, L. 2006. Research on the relevant factors of the algal growth in hydrodynamics condition. PhD dissertation, Chongqing University, China.
  • Wu, L. F., Chen, P. C., Huang, A. P., and Lee, C. M. 2012. The feasibility of biodiesel production by microalgae using industrial wastewater. Bioresource Technology 113:14–18.
  • Ying, K., Gilmour, D. J., and Zimmerman, W. B. 2014. Effects of CO2 and pH on growth of the microalga Dunaliella Salina. Journal of Microbial and Biochemical Technology 6(3):167–173.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.