185
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

A Potential Mechanism for Cu2+ Reduction, β-Cleavage, and β-Sheet Initiation Within The N-Terminal Domain of the Prion Protein: Insights from Density Functional Theory and Molecular Dynamics Calculations

&
Pages 1040-1059 | Published online: 20 Aug 2009

REFERENCES

  • Antwi, K., Mahar, M., Srikanth, R., Olbris, M. R., Tyson, J. F., and Vachet, R. W, 2008. Cu(II) organizes β-2-microglobulin oligomers but is released upon amyloid formation, Protein Sci. 17 (2008), pp. 748–759.
  • Becke, A. D., 1993. Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys. 98 (1993), pp. 5648–5652.
  • Bessen, R. A., Kocisko, D. A., Raymond, G. J., Nandan, S., Lansbury, P. T., and Caughey, B., 1995. Non-genetic propagation of strain-specific properties of scrapie prion protein, Nature 375 (1995), pp. 698–700.
  • Berendsen, H. C., Postma, J. P. M., van Gunsteren, W. F., and Hermans, J., 1981. "Interaction models for water in relation to protein hydration". In: Pullman, B., ed. Intermolecular forces. Dordrecht: Reidel; 1981. pp. 331–342.
  • Berendsen, H. J. C., Postma, J. P. M., DiNola, A., and Haak, J. R., 1984. Molecular dynamics with coupling to an external bath, J. Chem. Phys. 81 (1984), pp. 3684–3690.
  • Berti, F., Gaggelli, E., Guerrini, R., Janicka, A., Kozlowski, H., Legowska, A., Miecznikowska, H., Migliorini, C., Pogni, R., Remelli, M., Rolka, K., Valensin, D., and Valensin, G., 2007. Structural and dynamic characterization of copper(II) binding of the human prion protein outside the octarepeat region, Chem. Eur. J. 13 (2007), pp. 1991–2001.
  • Bocharova, O. V., Breydo, L., Salnikov, V. V., and Baskakov, I. V., 2005. Copper(II) inhibits in vitro conversion of prion protein into amyloid fibrils, Biochemistry 44 (2005), pp. 6776–6787.
  • Bonomo, R. P., Imperllizzeri, G., Pappalardo, G., Rizzarelli, E., and Tabbì, G., 2000. Copper(II) binding modes in the prion octapeptide PHGGGWGQ: A spectroscopic and voltammetric study, Chem. Eur. J. 6 (2000), pp. 4195–4202.
  • Burns, C. S., Aronoff-Spencer, E., Dunham, C. M., Lario, P., Avdievich, N. I., Antholine, W. E., Olmstead, M. M., Vrielink, A., Gerfen, G. J., Peisach, J., Scott, W. G., and Millhauser, G. L., 2002. Molecular features of the copper binding sites in the octarepeat domain of the prion protein, Biochemistry 41 (2002), pp. 3991–4001.
  • Calzolai, L., and Zahn, R., 2003. Influence of pH on NMR structure and stability of the human prion protein globular domain, J. Biol. Chem. 278 (2003), pp. 35592–35596.
  • Cancès, E., Mennucci, B., and Tomasi, J., 1997. A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics, J. Chem. Phys. 107 (1997), pp. 3032–3041.
  • Carlson, H. A., Nguyen, T. B., Orozco, M., and Jorgensen, W. L., 1993. Accuracy of free energies of hydration for organic molecules from 6–31G*-derived partial charges, J. Comput. Chem. 10 (1993), pp. 1240–1249.
  • Caughey, B., 2003. Prion protein conversions: Insight into mechanisms, TSE transmission barriers and strains, Br. Med. Bull. 66 (2003), pp. 109–120.
  • Campbell, T. A., Palmer, M. S., Will, R. G., Gibb, W. R., Luthert, P. J., and Collinge, J., 1996. A prion disease with a novel 96-base pair insertional mutation in the prion protein gene, Neurology 46 (1996), pp. 761–766.
  • Collinge, J., Harding, A. E., Owen, F., Poulter, M., Lofthouse, R., Boughey, A. M., Shah, T., and Crow, T. J., 1989. Insertion in prion protein gene in familial Creutzfeldt–Jakob disease, Lancet 2 (1989), pp. 15–17.
  • Cordeiro, Y., Kraineva, J., Gomes, M. P., Lopes, M. H., Martins, V. R., Lima, L. M., Foguel, D., Winter, R., and Silva, J. L., 2005. The amino-terminal PrP domain is crucial to modulate prion misfolding and aggregation, Biophys. J. 89 (2005), pp. 2667–2676.
  • Crichton, R. R., and Ward, R. J., 2004. "Metal ions and their complexes in medication". In: Sigel, A., and Sigel, H., eds. Metal ions in biological systems. Vol. 41. Boca Raton, FL: CRC Press; 2004. p. 187.
  • Davies, M. J., 1996. Protein and peptide alkoxyl radicals can give rise to C‐terminal decarboxylation and backbone cleavage, Arch. Biochem. Biophys. 336 (1996), pp. 163–172.
  • Davis, A. V., and O'Halloran, T. V., 2008. A place for thioether chemistry in cellular copper ion recognition and trafficking, Nat. Chem. Biol. 4 (2008), pp. 148–151.
  • Daidone, I., Amadei, A., and Di Nola, A., 2005. Thermodynamic and kinetic characterization of a beta-hairpin peptide in solution: An extended phase space sampling by molecular dynamics simulations in explicit water, Proteins 59 (2005), pp. 510–518.
  • De Gioia, L., Selvaggini, C., Ghibaudi, E., Diomede, L., Bugiani, O., Forloni, G., Tagliavini, F., and Salmona, M., 1994. Conformational polymorphism of the amyloidogenic and neurotoxic peptide homologous to residues 106–126 of the prion protein, J. Biol. Chem. 269 (1994), pp. 7859–7862.
  • Essman, U., Perela, L., Berkowitz, M. L., Darden, T., Lee, H., and Pedersen, L. G., 1995. A smooth particle mesh Ewald method, J. Chem. Phys. 103 (1995), pp. 8577–8592.
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J. A., Vreven, T., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Ortiz, J. V., Cui, Q., Baboul, A. G., Clifford, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C., and Pople, J. A., 2004. Gaussian 03, Revision C.02. Wallingford, CT: Gaussian, Inc; 2004, .
  • Goldfarb, L. G., Brown, P., McCombie, W. R., Goldgaber, D., Swergold, G. D., Wills, P. R., Cervenakova, L., Baron, H., Gibbs, C. J., and Gajdusek, D. C., 1991. Transmissible familial Creutzfeldt-Jakob disease associated with five, seven, and eight extra octapeptide coding repeats in the PRNP gene, Proc. Natl. Acad. Sci. USA 88 (1991), pp. 10926–10930.
  • Flechsig, E., Shmerling, D., Hegyi, I., Raeber, A. J., Fischer, M., Cozzio, A., von Mering, C., Aguzzi, A., and Weissmann, C., 2000. Prion protein devoid of the octapeptide repeat region restores susceptibility to scrapie in PrP knockout mice, Neuron 27 (2000), pp. 399–408.
  • Hess, B., Bekker, H., Berendsen, H. J. C., and Fraaije, J. G. E. M., 1997. LINCS: A linear constraint solver for molecular simulations, J. Comp. Chem. 18 (1997), pp. 1463–1472.
  • Huang, M. L., and Rauk, A., 2004. Structure and reactions of the peroxy radicals of glycine and alanine in peptides: An ab initio study, J. Phys. Org. Chem. 17 (2004), pp. 777–786.
  • Jiménez-Huete, A., Lievens, P. M., Vidal, R., Piccardo, P., Ghetti, B., Tagliavini, F., Frangione, B., and Prelli, F., 1998. Endogenous proteolytic cleavage of normal and disease-associated isoforms of the human prion protein in neural and non-neural tissues, Am. J. Pathol. 153 (1998), pp. 1561–1572.
  • Jones, C. E., Abdelraheim, S. R., Brown, D. R., and Viles, J. H., 2004. Preferential Cu2+ coordination by His96 and His111 induces beta-sheet formation in the unstructured amyloidogenic region of the prion protein, J. Biol. Chem. 279 (2004), pp. 32018–32027.
  • Jorgensen, W. L., Maxwell, D. S., and Tirado-Rives, J., 1996. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids, J. Am. Chem. Soc. 118 (1996), pp. 11225–11236.
  • Kaminski, G., Duffy, E. M., Matsui, T., and Jorgensen, W. L., 1994. Free energies of hydration and pure liquid properties of hydrocarbons from the OPLS all-atom mode, J. Phys. Chem. 98 (1994), pp. 13077–13082.
  • Klewpatinond, M., Davies, P., Bowen, S., Brown, D. R., and Viles, J. H., 2008. Deconvoluting the Cu2+ binding modes of full-length prion protein, J. Biol. Chem. 283 (2008), pp. 1870–1881.
  • Laffont-Proust, I., Faucheux, B. A., Hässig, R., Sazdovitch, V., Simon, S., Grassi, J., Hauw, J. J., Moya, K. L., and Haïk, S., 2005. The N-terminal cleavage of cellular prion protein in the human brain, FEBS Lett. 579 (2005), pp. 6333–6337.
  • Laplanche, J. L., Delasnerie-Laupretre, N., Brandel, J. P., Dussaucy, M., Chatelain, J., and Launay, J. M., 1995. Two novel insertions in the prion protein gene in patients with late onset dementia, Hum. Mol. Genet. 4 (1995), pp. 1109–1111.
  • Lehman, S., and Harris, D. A., 1995. A mutant prion protein displays an aberrant membrane association when expressed in cultured cells, J. Biol. Chem. 270 (1995), pp. 24589–24597.
  • Leliveld, S. R., Dame, R. T., Wuite, G. J., Stitz, L., and Korth, C., 2006. The expanded octarepeat domain selectively binds prions and disrupts homomeric prion protein interactions, J. Biol. Chem. 281 (2006), pp. 3268–3275.
  • Lindahl, E., Hess, B., and van der Spoel, D., 2001. GROMACS 3.0: A package for molecular simulation and trajectory analysis, J. Mol. Model. 7 (2001), pp. 306–317.
  • Loach, P. A., 1976. "Oxidation-reduction potentials, absorbance bands and molar absorbance of compounds used in biochemical studies". In: Fasman, G. D., ed. Handbook of biochemistry and molecular biology,Physical and chemical data. Vol. 1. Cleveland, OH: CRC Press; 1976. pp. 123–130.
  • Mangé, A., Béranger, F., Peoc'h, K., Onodera, T., Frobert, Y., and Lehmann, S., 2004. Alpha- and beta-cleavages of the amino-terminus of the cellular prion protein, Biol. Cell. 96 (2004), pp. 125–132.
  • Marklund, S. L., Westman, N. G., Lundgren, E., and Roos, G., 1982. Copper- and zinc-containing superoxide disumtase, Manganese-containing superoxide disumtase, catalase and glutathione peroxidase in normal and neoplastic human cell lines and normal human tissues, Cancer Res. 42 (1982), pp. 1955–1961.
  • Mennucci, B., Cancès, E., and Tomasi, J., 1997. Evaluation of solvent effects in isotropic and anisotropic dielectrics, and in ionic solutions with a unified integral equation method: Theoretical bases, computational implementation and numerical applications, J. Phys. Chem. B 101 (1997), pp. 10506–10517.
  • Mennucci, B., Cammi, R., and Tomasi, J., 1999. Analytical free energy second derivatives with respect to nuclear coordinates: A complete formulation for electrostatic continuum solvation models, J. Chem. Phys. 110 (1999), pp. 6858–6870.
  • Miura, T., Sasaki, S., Toyama, A., and Takeuchi, H., 2005. Copper reduction by the octapeptide repeat region of prion protein: pH dependence and implications in cellular copper uptake, Biochemistry 44 (2005), pp. 8712–8720.
  • Miyamoto, S., and Kollman, P. A., 1992. SETTLE: An analytical version of the SHAKE and RATTLE algorithms for rigid water models, J. Comp. Chem. 13 (1992), pp. 952–962.
  • Nadal, R. C., Abdelraheim, S. R., Brazier, M. W., Rigby, S. E., Brown, D. R., and Viles, J. H., 2007. Prion protein does not redox-silence Cu2+, but is a sacrificial quencher of hydroxyl radicals, Free Radical Biol. Med. 42 (2007), pp. 79–89.
  • Nguyen, J., Baldwin, M. A., Cohen, F. E., and Prusiner, S. B., 1995. Prion protein peptides induce alpha-helix to beta-sheet conformational transitions, Biochemistry 34 (1995), pp. 4186–4192.
  • Opazo, C., Barría, M. I., Ruiz, F. H., and Inestrosa, N. C., 2003. Copper reduction by copper binding proteins and its relation to neurodegenerative diseases, BioMetals 16 (2003), pp. 91–98.
  • ósz, K., Nagy, Z., Pappalardo, G., Di Natale, G., Sanna, D., Micera, G., Rizzarelli, E., and Sóvágó, I., 2007. Copper(II) interaction with prion peptide fragments encompassing histidine residues within and outside the octarepeat domain: Speciation, stability constants and binding details, Chem. Eur. J. 13 (2007), pp. 7129–7143.
  • Owen, F., Poulter, M., Lofthouse, R., Collinge, J., Crow, T. J., Risby, D., Baker, H. F., Ridley, R. M., Hsiao, K., and Prusiner, S. B., 1989. Insertion in prion protein gene in familial Creutzfeldt–Jakob disease, Lancet 1 (1989), pp. 51–52.
  • Pauly, P. C., and Harris, D. A., 1998. Copper stimulates endocytosis of the prion protein, J. Biol. Chem. 273 (1998), pp. 33107–33110.
  • Parchi, P., Castellani, R., Capellari, S., Ghetti, B., Young, K., Chen, S. G., Farlow, M., Dickson, D. W., Sima, A .A., Trojanowski, J. Q., Petersen, R. B., and Gambetti, P., 1996. Molecular basis of phenotypic variability in sporadic Creutzfeldt–Jakob disease, Ann. Neurol. 39 (1996), pp. 767–778.
  • Perera, W. S., and Hooper, N. M., 2001. Ablation of the metal ion-induced endocytosis of the prion protein by disease-associated mutation of the octarepeat region, Curr. Biol. 11 (2001), pp. 519–523.
  • Pushie, M. J., and Rauk, A., 2003. Computational studies of Cu(II)[peptide] binding motifs: Cu[HGGG] and Cu[HG] as models for Cu(II) binding to the prion protein octarepeat region, J. Biol. Inorg. Chem. 8 (2003), pp. 53–65.
  • Pushie, M. J., and Vogel, H. J., 2007. Molecular dynamics simulations of two tandem octarepeats from the mammalian prion protein: Fully Cu2+-bound and metal-free forms, Biophys. J. 93 (2007), pp. 3762–3774.
  • Pushie, M. J., and Vogel, H. J., 2008. Modeling by assembly and molecular dynamics simulations of the low Cu2+ occupancy form of the mammalian prion protein octarepeat region: Gaining insight into Cu2+-mediated β‐cleavage, Biophys J. 95 (2008), pp. 5084–5091.
  • Prusiner, S. B., 1982. Novel proteinaceous infectious particles cause scrapie, Science 216 (1982), pp. 136–144.
  • Prusiner, S. B., 1991. Molecular biology of prion diseases, Science 252 (1991), pp. 1515–1522.
  • Rauk, A., Yu, D., Taylor, J., Shustov, G. V., Block, D. A., and Armstrong, D. A., 1999. Effects of structure on αC-H bond enthalpies of amino acid residues: Relevance to H transfers in enzyme mechanisms and in protein oxidation, Biochemistry 38 (1999), pp. 9089–9096.
  • Requena, J. R., Groth, D., Legname, G., Stadtman, E. R., Prusiner, S. B., and Levine, R. L., 2001. Copper-catalyzed oxidation of the recombinant SHa(29–231) prion protein, Proc. Natl. Acad. Sci. USA 98 (2001), pp. 7170–7175, .
  • Ruiz, F. H., Silva, E., and Inestrosa, N. C., 2000. The N-terminal tandem repeat region of human prion protein reduces copper: role of tryptophan residues, Biochem. Biophys. Res. Commun. 269 (2000), pp. 491–495.
  • Scott, A. P., and Radom, L., 1996. Harmonic vibrational frequencies: An evaluation of Hartree– Fock, Møller–Plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors, J. Phys. Chem. 100 (1996), pp. 16502–16513.
  • Selvaggini, C., De Gioia, L., Cantù, L., Ghibaudi, E., Diomede, L., Passerini, F., Forloni, G., Bugiani, O., Tagliavini, F., and Salmona, M., 1993. Molecular characteristics of a protease-resistant, amyloidogenic and neurotoxic peptide homologous to residues 106–126 of the prion protein, Biochem. Biophys. Res. Commun. 194 (1993), pp. 1380–1386.
  • Srikanth, R., Wilson, J., Burns, C. S., and Vachet, R. W., 2008. Identification of the copper(II) coordinating residues in the prion protein by metal-catalyzed oxidation mass spectrometry: Evidence for multiple isomers at low copper(II) loadings, Biochemistry 47 (2008), pp. 9258–9268.
  • Stöckel, J., Safar, J., Wallace, A. C., Cohen, F. E., and Prusiner, S. B., 1998. Prion protein selectively binds copper(II) ions, Biochemistry 37 (1998), pp. 7185–7193.
  • van Rheede, T., Smolenaars, M. M., Madsen, O., and de Jong, W. W., 2003. Molecular evolution of the mammalian prion protein, Mol. Biol. Evol. 20 (2003), pp. 111–121.
  • Vassallo, N., and Herms, J., 2003. Cellular prion protein function in copper homeostasis and redox signalling at the synapse, J. Neurochem. 86 (2003), pp. 538–544.
  • Wagman, D. D., Evans, W. H., Parker, V. B., Schumm, R. H., Halow, I., Bailey, S. M., Churney, K. L., and Nuttall, R. L., 1982. The NBS Tables of chemical Thermodynamic properties, J. Phys. Chem. Ref. Data 11 (2) (1982).
  • Wadsworth, J. D., Hill, A. F., Joiner, S., Jackson, G. S., Clarke, A. R., and Collinge, J., 1999. Strain-specific prion-protein conformation determined by metal ions, Nat. Cell. Biol. 1 (1999), pp. 55–59.
  • Watt, N. T., and Hooper, N. M., 2005. Reactive oxygen species (ROS)-mediated beta-cleavage of the prion protein in the mechanism of the cellular response to oxidative stress, Biochem. Soc. Trans. 33 (2005), pp. 1123–1125.
  • Watt, N. T., Taylor, D. R., Gillott, A., Thomas, D. A., Perera, W. S., and Hooper, N. M., 2005. Reactive oxygen species-mediated beta-cleavage of the prion protein in the cellular response to oxidative stress, J. Biol. Chem. 280 (2005), pp. 35914–35921.
  • Wells, M. A., Jackson, G. S., Jones, S., Hosszu, L. L., Craven, C. J., Clarke, A. R., Collinge, J., and Waltho, J. P., 2006a. A reassessment of copper(II) binding in the full-length prion protein, Biochem. J. 399 (2006a), pp. 435–444.
  • Wells, M. A., Jelinska, C., Hosszu, L. L., Craven, C. J., Clarke, A. R., Collinge, J., Waltho, J. P., and Jackson, G. S., 2006b. Multiple forms of copper (II) co-ordination occur throughout the disordered N-terminal region of the prion protein at pH 7.4, Biochem. J. 400 (2006b), pp. 501–510.
  • Windl, O., Giese, A., Schulz-Schaeffer, W., Zerr, I., Skworc, K., Arendt, S., Oberdieck, C., Bodemer, M., Poser, S., and Kretzschmar, H. A., 1999. Molecular genetics of human prion diseases in Germany, Hum. Genet. 105 (1999), pp. 244–252.
  • Wong, B. S., Wang, H., Brown, D. R., and Jones, I. M., 1999. Selective oxidation of methionine residues in prion proteins, Biochem. Biophys. Res. Commun. 259 (1999), pp. 352–355.
  • Wood, G. P. F., Easton, C. J., Rauk, A., Davies, M. J., and Radom, L., 2006. Effect of side chains on competing pathways for β-scission reactions of peptide-backbone alkoxyl radicals, J. Phys. Chem. A 110 (2006), pp. 10316–10323.
  • Yin, S., Yu, S., Li, C., Wong, P., Chang, B., Xiao, F., Kang, S. C., Yan, H., Xiao, G., Grassi, J., Tien, P., and Sy, M. S., 2006. Prion proteins with insertion mutations have altered N-terminal conformation and increased ligand binding activity and are more susceptible to oxidative attack, J. Biol. Chem. 281 (2006), pp. 10698–10705.
  • Yuan, J., Xiao, X., McGeehan, J., Dong, Z., Cali, I., Fujioka, H., Kong, Q., Kneale, G., Gambetti, P., and Zou, W. Q., 2006. Insoluble aggregates and protease-resistant conformers of prion protein in uninfected human brains, J. Biol. Chem. 281 (2006), pp. 34848–34858.
  • Yuan, J., Dong, Z., Guo, J. P., McGeehan, J., Xiao, X., Wang, J., Cali, I., McGeer, P. L., Cashman, N. R., Bessen, R., Surewicz, W. K., Kneale, G., Petersen, R. B., Gambetti, P., and Zou, W. Q., 2008. Accessibility of a critical prion protein region involved in strain recognition and its implications for the early detection of prions, Cell. Mol. Life. Sci. 65 (2008), pp. 631–643.
  • Zahn, R., 2003. The octapeptide repeats in mammalian prion protein constitute a pH-dependent folding and aggregation site, J. Mol. Biol. 334 (2003), pp. 477–488, .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.