367
Views
21
CrossRef citations to date
0
Altmetric
Original Articles

Effects of Elevated Carbon Dioxide (CO2) Concentrations on Early Developmental Stages of the Marine Copepod Calanus finmarchicus Gunnerus (Copepoda: Calanoidae)

, , , &

REFERENCES

  • Anderson, D. H., and Robinson, R. J. 1946. Rapid electrometric determination of the alkalinity of sea water using a glass electrode. Ind. Eng. Chem. 18: 767–769.
  • Bathmann, U. V., Noji, T. T., Voss, M., and Peinert, R. 1987. Copepod fecal pellets: abundance, sedimentation and content at a permanent station in the Norwegian Sea in May/June 1986. Mar. Ecol. Prog. Ser. 38: 45–51.
  • Beaugarand, G., and Kirby, R. R. 2010. Climate, plankton and cod. Global Change Biol. 16: 1268–1280.
  • Bechmann, R. K., Taban, I. C., Westerlund, S., Godal, B. F., Arnberg, M., Vingen, S., Ingvarsdottir, A., and Baussant, T. 2011. Effects of ocean acidification on early life stages of shrimp (Pandalus borealis) and mussel (Mytilus edulis). J. Toxicol. Environ. Health A 74: 424–438.
  • Beniash, E., Ivanina, A., Lieb, N. S., Kurochkin, I. and Sokolova, I. M. 2010. Elevated level of carbon dioxide affects metabolism and shell formation in oysters Crassostrea virginica. Mar. Ecol. Prog. Ser. 419: 95–108.
  • Caldeira K., and Wickett, M. E. 2003. Anthropogenic carbon and ocean pH. Nature 425: 365.
  • Caldeira K., and Wickett, M. E. 2005. Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. J. Geophys. Res. Oceans. 110: CO9S04. doi:101029/2004JC002671.
  • Campbell, R. G., Wagner, M. M., Teegarden, G. J., Boudreau, C. A., and Durbin, E. G. 2001. Growth and development rates of the copepod Calanus finmarchicus reared in the laboratory. Mar. Ecol. Prog. Ser. 221: 161–183.
  • Clark, D., Lamare, M., and Barker, M. 2009. Response of sea urchin pluteus larvae (Echinodermata: Echinoidea) to reduced seawater pH: A comparison among a tropical, temperate, and a polar species. Mar. Biol. 156: 1125–1137.
  • Comeau, S., Gorsky, G., Jeffree, R., Teyssie, J. L., and Gattuso, J.-P. 2009. Impact of ocean acidification on a key Arctic pelagic mollusc (Limacina helicina). Biogeosciences 6: 1877–1882.
  • Conover, R. J. 1988. Comparative life histories in the genera Calanus and Neocalanus in high latitudes of the northern hemisphere. Hydrobiologia 167/168: 127–142.
  • Dickson, A. G., and Millero, F. J. 1987. A comparison of the equilibrium-constants for the dissociation of carbonic-acid in seawater media. Deep-Sea Res. 34: 1733–1743.
  • Dupont, S., Havenhand, J., Thorndyke, W., Peck, L., and Thorndyke, M. 2008. Near-future level of CO2-driven ocean acidification radically affects larval survival and development in the brittlestar Ophiothrix fragilis. Mar. Ecol. Prog. Ser. 373: 285–294.
  • Edvardsen, A., Pedersen, J. M., Slagstad, D., Semenova, T., and Timonin, A. 2006. Distribution of overwintering Calanus in the North Norwegian Sea. Ocean Sci. 2: 87–96.
  • Egilsdottir, H., Spicer, J. I., and Rundle, S. D. 2009. The effect of CO2 acidified sea water and reduced salinity on aspects of the embryonic development of the amphipod Echinogammarus marinus (Leach). Mar. Pollut. Bull. 58: 1187–1191.
  • Ellis, R. P., Bersey, J., Rundle, S. D., Hall-Spencer, J. M., and Spicer, J. I. 2009. Subtle but significant effects of CO2 acidified seawater on embryos of the intertidal snail, Littorina obtusata. Aquat. Biol. 5: 41–48.
  • Fabry, V. J., Seibel, B. A., Feely, R. A., and Orr, J. C. 2008. Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J. Mar. Sci. 65: 414–432.
  • Findlay, H. S., Kendall, M. A., Spicer, J. I., and Widdicombe, S. 2009. Future high CO2 in the intertidal may compromise adult barnacle Semibalanus balanoides survival and embryonic development rate. Mar. Ecol. Prog. Ser. 389: 193–202.
  • Fitzer, S. C., Caldwell, G. S., Close, A. J., Clare, A. S., Upstill-Goddard, R. C., and Bentley, M. G. 2012. Ocean acidification induces multi-generational decline in copepod naupliar production with possible conflict for reproductive resource allocation. J. Exp. Mar. Biol. Ecol. 418–419:30–36.
  • Gianguzza, P., Visconti, G., Gianguzza, F., Vizzini, S., Sarà, G., and Dupont, S. 2013. Temperature modulates the response of the thermophilous sea urchin Arbacia lixula early life stages to CO2-driven acidification. Mar. Environ. Res. pii: S0141-1136(13)00123-2. doi:10.1016/j.marenvres.2013.07.008 [Epub ahead of print]
  • Gutowska, M. A., and Melzner, F. 2009. Abiotic conditions in cephalopod (Sepia officinalis) eggs: Embryonic development at low pH and high pCO2. Mar. Biol. 156: 515–519.
  • Hansen, B. H., Altin, D., Nordtug, T., and Olsen, A. J. 2007. Suppression subtractive hybridization library prepared from the copepod Calanus finmarchicus exposed to a sublethal mixture of environmental stressors. Comp. Biochem. Physiol. D 2: 250–256.
  • Havenhand, J. N., Buttler, F. R., Thorndyke, M. C., and Williamson, J. E. 2008. Near-future levels of ocean acidification reduce fertilization success in a sea urchin. Curr. Biol. 18: R651–R652.
  • Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K., and Johnson, C. A. 2001. Climate change 2001: The scientific basis, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. New York, NY: Cambridge University Press.
  • Hygum, B. H., Rey, C., and Hansen, B. W. 2000. Growth and development rates of Calanus finmarchicus nauplii during a diatom spring bloom. Mar. Biol. 136: 1075–1085.
  • Jónasdóttir, S. H., Gudfinnsson, H. G., Gislason, A., and Astthorsson, O. S. 2002. Diet composition and quality for Calanus finmarchicus egg production and hatching success off south-west Iceland. Mar. Biol. 140: 1195–1206.
  • Keppel, E. A., Scrosati, R. A., and Courtenay, S. C. 2012. Ocean acidification decreases growth and development in American lobster (Homarus americanus) larvae. J. Northwest Atlantic Fish. Sci. 44: 61–66.
  • Kurihara, H. 2008. Effects of CO2-driven ocean acidification on the early developmental stages of invertebrates. Mar. Ecol. Prog. Ser. 373: 275–284.
  • Kurihara, H., and Ishimatsu, A. 2008. Effects of high CO2 seawater on the copepod (Acartia tsuensis) through all life stages and subsequent generations. Mar. Pollut. Bull. 56: 1086–1090.
  • Kurihara, H., Shimode, S., and Shirayama, Y. 2004. Effects of raised CO2 concentration on the egg production rate and early development of two marine copepods (Acartia steueri and Acartia erythraea). Mar. Pollut. Bull. 49: 721–727.
  • Kwasniewski, S., Gluchowska, M., Walkusz, W., Karnovsky, N. J., Jakubas, D., Wojczulanis-Jakubas, K., Harding, A. M. A., Goszczko, I., Cisek, M., Beszczynska-Möller, A., Walcowski, W., Weslawski, J. M., and Stempniewicz, L. 2012. Interannual changes in zooplankton on the West Spitsbergen Shelf in relation to hydrography and their consequences for the diet of planktivorous seabirds. ICES J. Mar. Sci. 69: 890–901.
  • Marshall, S. M., and Orr, A. P. 1972. The biology of a marine copepod. New York, NY: Springer-Verlag.
  • Mayor, D. J., Matthews, C., Cook, K., Zuur, A. F., and Hay, S. 2007. CO2-induced acidification affects hatching success in Calanus finmarchicus. Mar. Ecol. Prog. Ser. 350: 91–97.
  • Mayor, D. J., Everett, N. R., and Cook, K. B. 2012. End of century ocean warming and acidification effects on reproductive success in a temperate marine copepod. J. Plankton Res. 34: 258–262.
  • Mehrbach, C., Culberson, C. H., Hawley, J. E., and Pytkowicz, R. M. 1973. Measurement of apparent dissociation constants of carbonic acid in seawater at atmospheric-pressure. Limnol. Oceanogr. 18: 897–907.
  • Melzner, F., Gutowska, M. A., Langenbuch, M., Dupont, S., Lucassen, M., Thorndyke, M. C., Bleich, M., and Pörtner, H. O. 2009. Physiological basis for high CO2 tolerance in marine ectothermic animals: Pre-adaptation through lifestyle and ontogeny? Biogeosciences 6: 2313–2331.
  • Melzner, F., Stange, P., Trübenbach K., Thomsen, J., Casties, I., Panknin, U., Gorb, S. N., and Gutowska, M. A. 2011. Food supply and seawater pCO2 impact calcification and internal shell dissolution in the blue mussel Mytilus edulis. PLoS ONE 6: e24223.
  • Metz, B., Davidson, O., de Coninck, H. C., Loos, M., and Meyer, L. A. 2005. IPCC special report on carbon dioxide capture and storage: Prepared by Working Group III of the Intergovernmental Panel on Climate Change. New York, NY: Cambridge University Press.
  • Meyer, F., Green, A., Moore, M., and Manahan, D. 2007. Food availability and physiological state of sea urchin larvae (Strongylocentrotus purpuratus). Mar. Biol. 152: 179–191.
  • Pedersen, S. A., Olsen, A. J., Hansen, B. H., and Altin, D. 2013. Medium-term exposure of the North Atlantic copepod Calanus finmarchicus (Gunnerus, 1770) to CO2-acidified seawater; effects on survival, growth and development. Biogeosciences. 10: 1–10.
  • Pierrot, D., Lewis, D. E., and Wallace, D. W. R. 2006. CO2SYS.EXE-MS Excel Program Developed for CO2 system calculations. ORNL/CDIAC-105a. Oak Ridge, TN: Carbon Dioxide Information Center, Oak Ridge National Laboratory, U.S. Department of Energy. http://cdiac.ornl.gov/ftp/co2sys
  • Planque, B., and Batten, S. D. 2000. Calanus finmarchicus in the North Atlantic; The year of Calanus in the context of interdecadal changes. ICES J. Mar. Sci. 57: 1528–1535.
  • Pörtner, H. O., Dupont, S., Melzner, F., Storch, D., and Thorndyke, M. C. 2010. Studies of metabolic rate and other characters across life stages. In Guide to best practices for ocean acidification research and data reporting 2010, 167–180. Luxembourg: Publications Office of the European Union.
  • Runge, J. A. 1988. Should we expect a relationship between primary production and fisheries? The role of copepod dynamics as a filter of trophic variability. Hydrobiologia 167/168: 61–71.
  • Shek, L., and Liu, H. 2010. Oxygen consumption rates of fecal pellets produced by three coastal copepod species fed with a diatom Thalassiosira pseudonana. Mar. Pollut. Bull. 60: 1005–1009.
  • Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L. 2007. Climate change 2007: The physical science basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. New York, NY: Cambridge University Press.
  • Stumpp, M., Wren, J., Melzner, F., Thorndyke, M. C., and Dupont, S. T. 2011. CO2 induced seawater acidification impacts sea urchin larval development I: Elevated metabolic rates decrease scope for growth and induce developmental delay. Comp. Biochem. Physiol. A 160: 331–340.
  • Takahashi, T., and Ohno, A. 1996. The temperature effect on the development of calanoid copepod, Acartia tsuensis, with some comments to morphogenesis. J. Oceanogr. 52: 125–137.
  • Talmage, S. C., and Gobler, C. J. 2009. The effects of elevated carbon dioxide concentrations on the metamorphosis, size, and survival of larval hard clams (Mercenaria mercenaria), bay scallops (Argopecten irradians), and Eastern oysters (Crassostrea virginica). Limnol. Oceanogr. 54: 2072–2080.
  • Todgham, A. E., and Hofmann, G. E. 2009. Transcriptomic response of sea urchin larvae Strongylocentrotus purpuratus to CO2-driven seawater acidification. J. Exp. Biol. 212: 2579–2594.
  • Turley, C., Nightingale, P., Riley, N., Widdicombe, S., Joint I., Gallienne, C., Lowe, D., Goldson, L., Beaumont, N., Mariotte, P., Groom, S., Smerdon, G., Rees, A., Blackford, J., Owens, N., West, J., Land, P., and Woodason, E. 2004. Literature review: Environmental impacts of a gradual or catastrophic release of CO2 into the marine environment following carbon dioxide capture. London, UK: UK Department for Environment, Food and Rural Affairs. MARP 30 (ME2104).
  • Walther, K., Anger, K., and Portner, H. 2010. Effects of ocean acidification and warming on the larval development on the spider crab Hyas araneus from different latitudes (54° vs 79°N). Mar. Ecol. Prog. Ser. 417: 159–170.
  • Weydmann, A, Søreide, J. E., Kwasniewski, S., and Widdicombe, S. 2012. Influence of CO2-induced acidification on the reproduction of a key Arctic copepod Calanus glacialis. J. Exp. Mar. Biol. Ecol. 428: 39–42.
  • Wood, H. L., Spicer, J. I., and Widdicombe, S. 2008. Ocean acidification may increase calcification rates, but at a cost. Proc. R. Soc. B Biol. Sci. 275: 1767–1773.
  • Zhang, D., Li, S., Wang, G., and Guo, D. 2011.Impacts of CO2-driven seawater acidification on survival, egg production rate and hatching success of four marine copepods. Acta Oceanol. Sin. 30: 86–94.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.