286
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

The Effect of Tungstate Nanoparticles on Reactive Oxygen Species and Cytotoxicity in Raw 264.7 Mouse Monocyte Macrophage Cells

, , , , , & show all
Pages 1251-1268 | Received 02 Jan 2014, Accepted 20 Feb 2014, Published online: 11 Sep 2014

REFERENCES

  • Applerot, G., Lipovsky, A., Dror, R., Perkas, N., Nitzan, Y., Lubart, R., and Gedanken, A. 2009. Enhanced antibacterial activity of nanocrystalline zno due to increased ros-mediated cell injury. Adv. Funct. Mater. 19: 842–852.
  • Chen, J., Zhou, H., Santulli, A. C., and Wong, S. S. 2010. Evaluating cytotoxicity and cellular uptake from the presence of variously processed tio2 nanostructured morphologies. Chem. Res. Toxicol. 23: 871–879.
  • Chung, H. E., Yu, J., Baek, M., Lee, J. A., Kim, M. S., Kim, S. H., Maeng, E. H., Lee, J. K., Jeong, J., and Choi, S. J. 2013. Toxicokinetics of zinc oxide nanoparticles in rats. J. Phys. Conf. Ser. 429: 012037.
  • Collins, A. R., Oscoz, A. A., Brunborg, G., Gaivão, I., Giovannelli, L., Kruszewski, M., Smith, C. C., and Štětina, R. 2008. The comet assay: Topical issues. Mutagenesis 23: 143–151.
  • Comini, E. 2006. Metal oxide nano-crystals for gas sensing. Anal. Chim. Acta 568: 28–40.
  • Donaldson, K., Murphy, F., Duffin, R., and Poland, C. 2010. Asbestos, carbon nanotubes and the pleural mesothelium: A review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part. Fibre Toxicol. 7: 5.
  • Fairbairn, D. W., Olive, P. L., and O’Neill, K. L. 1995. The comet assay: A comprehensive review. Mutat. Res. Genet. Toxicol. 339: 37–59.
  • Gibbs-Flournoy, E., Bromberg, P., Hofer, T., Samet, J., and Zucker, R. 2011. Darkfield-confocal microscopy detection of nanoscale particle internalization by human lung cells. Part. Fibre Toxicol. 8: 2.
  • Hartmann, A., and Speit, G. 1997. The contribution of cytotoxicity to DNA-effects in the single cell gel test (comet assay). Toxicol. Lett. 90: 183–188.
  • Heng, B., Zhao, X., Tan, E., Khamis, N., Assodani, A., Xiong, S., Ruedl, C., Ng, K., and Loo, J.-C. 2011. Evaluation of the cytotoxic and inflammatory potential of differentially shaped zinc oxide nanoparticles. Arch. Toxicol. 85: 1517–1528.
  • Huang, S., Chueh, P. J., Lin, Y.-W., Shih, T.-S., and Chuang, S.-M. 2009. Disturbed mitotic progression and genome segregation are involved in cell transformation mediated by nano-TiO2 long-term exposure. Toxicol. Appl. Pharmacol. 241: 182–194.
  • Hussain, S., Al-Nsour, F., Rice, A. B., Marshburn, J., Yingling, B., Ji, Z., Zink, J. I., Walker, N. J., and Garantziotis, S. 2012. Cerium dioxide nanoparticles induce apoptosis and autophagy in human peripheral blood monocytes. ACS Nano 6: 5820–5829.
  • Hussain, S. M., Hess, K. L., Gearhart, J. M., Geiss, K. T., and Schlager, J. J. 2005. In vitro toxicity of nanoparticles in Brl 3a rat liver cells. Toxicol. In Vitro 19: 975–983.
  • Jeng, H. A., and Swanson, J. 2006. Toxicity of metal oxide nanoparticles in mammalian cells. J. Toxicol. Environ. Health A 41: 2699–2711.
  • Ji, Z., Wang, X., Zhang, H., Lin, S., Meng, H., Sun, B., George, S., Xia, T., Nel, A. E., and Zink, J. I. 2012. Designed synthesis of ceo2 nanorods and nanowires for studying toxicological effects of high aspect ratio nanomaterials. ACS Nano 6: 5366–5380.
  • Kang, J. L., Moon, C., Lee, H. S., Lee, H. W., Park, E.-M., Kim, H. S., and Castranova, V. 2008. Comparison of the biological activity between ultrafine and fine titanium dioxide particles in RAW 264.7 cells associated with oxidative stress. J. Toxicol. Environ. Health, A 71: 478–485.
  • Karlsson, H. L., Gustafsson, J., Cronholm, P., and Möller, L. 2009. Size-dependent toxicity of metal oxide particles—A comparison between nano- and micrometer size. Toxicol. Lett. 188: 112–118.
  • Koenigsmann, C., Santulli, A. C., Sutter, E., and Wong, S. S. 2011. Ambient surfactantless synthesis, growth mechanism, and size-dependent electrocatalytic behavior of high-quality, single crystalline palladium nanowires. ACS Nano 5: 7471–7487.
  • Koenigsmann, C., Sutter, E., Chiesa, T. A., Adzic, R. R., and Wong, S. S. 2012. Highly enhanced electrocatalytic oxygen reduction performance observed in bimetallic palladium-based nanowires prepared under ambient, surfactantless conditions. Nano Lett. 12: 2013–2020.
  • Koenigsmann, C., Zhou, W.-p., Adzic, R. R., Sutter, E., and Wong, S. S. 2010. Size-dependent enhancement of electrocatalytic performance in relatively defect-free, processed ultrathin platinum nanowires. Nano Lett. 10: 2806–2811.
  • Leonard, S., Chen, B., Stone, S., Schwegler-Berry, D., Kenyon, A., Frazer, D., and Antonini, J. 2010. Comparison of stainless and mild steel welding fumes in generation of reactive oxygen species. Part. Fibre Toxicol. 7: 32.
  • Love, S. A., Maurer-Jones, M. A., Thompson, J. W., Lin, Y. S., and Haynes, C. L. 2012. Assessing nanoparticle toxicity. In Annual review of analytical chemistry, ed. R. G. Cooks and E. S. Yeung. Palo Alto, CA: Annual Reviews, 181–205.
  • Lu, S., Duffin, R., Poland, C., Daly, P., Murphy, F., Drost, E., MacNee, W., Stone, V., and Donaldson, K. 2009. Efficacy of simple short-term in vitro assays for predicting the potential of metal oxide nanoparticles to cause pulmonary inflammation. Environ. Health Perspect. 117: 241–247.
  • Monteiro-Riviere, N. A., Wiench, K., Landsiedel, R., Schulte, S., Inman, A. O., and Riviere, J. E. 2011. Safety evaluation of sunscreen formulations containing titanium dioxide and zinc oxide nanoparticles in UVB sunburned skin: An in vitro and in vivo study. Toxicol. Sci. 123: 264–280.
  • Moon, C., Park, H.-J., Choi, Y.-H., Park, E.-M., Castranova, V., and Kang, J. L. 2010. Pulmonary inflammation after intraperitoneal administration of ultrafine titanium dioxide TiO2) at rest or in lungs primed with lipopolysaccharide. J. Toxicol. Environ. Health A 73: 396–409.
  • Nel, A., Xia, T., Mädler, L., and Li, N. 2006. Toxic potential of materials at the nanolevel. Science 311: 622–627.
  • O’Neill, L. A. 2008. Immunology: How frustration leads to inflammation. Sci. Signaling 320: 619.
  • Park, E.-J., and Park, K. 2009. Oxidative stress and pro-inflammatory responses induced by silica nanoparticles in vivo and in vitro. Toxicol. Lett. 184: 18–25.
  • Porter, D., Sriram, K., Wolfarth, M., Jefferson, A., Schwegler-Berry, D., Andrew, M. E., and Castranova, V. 2008. A biocompatible medium for nanoparticle dispersion. Nanotoxicology 2: 144–154.
  • Roberts, J. R., Chapman, R. S., Tirumala, V. R., Karim, A., Chen, B. T., Schwegler-Berry, D., Stefaniak, A. B., Leonard, S. S., and Antonini, J. M. 2011. Toxicological evaluation of lung responses after intratracheal exposure to non-dispersed titanium dioxide nanorods. J Toxicol Environ Health A 74: 790–810.
  • Rushton, E. K., Jiang, J., Leonard, S. S., Eberly, S., Castranova, V., Biswas, P., Elder, A., Han, X., Gelein, R., and Finkelstein, J. 2010. Concept of assessing nanoparticle hazards considering nanoparticle dosemetric and chemical/biological response metrics. J. Toxicol. Environ. Health, A 73: 445–461.
  • Schneider, C. A., Rasband, W. S., and Eliceiri, K. W. 2012. NIH Image to ImageJ: 25 Years of image analysis. Nat. Methods 9: 671–675.
  • Simon-Deckers, A. l., Loo, S., Mayne-L’hermite, M., Herlin-Boime, N., Menguy, N., Reynaud, C. c., Gouget, B., and Carrieère, M. 2009. Size-, composition- and shape-dependent toxicological impact of metal oxide nanoparticles and carbon nanotubes toward bacteria. Environ. Sci. Technol. 43: 8423–8429.
  • Thongtem, T., Kungwankunakorn, S., Kuntalue, B., Phuruangrat, A., and Thongtem, S. 2010. Luminescence and absorbance of highly crystalline camoo4, srmoo4, cawo4 and srwo4 nanoparticles synthesized by co-precipitation method at room temperature. J. Alloys Compound 506: 475–481.
  • Wörle-Knirsch, J. M., Kern, K., Schleh, C., Adelhelm, C., Feldmann, C., and Krug, H. F. 2006. Nanoparticulate vanadium oxide potentiated vanadium toxicity in human lung cells. Environ. Sci. Technol. 41: 331–336.
  • Xia, T., Kovochich, M., Liong, M., Mädler, L., Gilbert, B., Shi, H., Yeh, J. I., Zink, J. I., and Nel, A. E. 2008. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2: 2121–2134.
  • Yang, H., Liu, C., Yang, D., Zhang, H., and Xi, Z. 2009. Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: The role of particle size, shape and composition. J. Appl. Toxicol. 29: 69–78.
  • Zhang, F., Sfeir, M. Y., Misewich, J. A., and Wong, S. S. 2008a. Room-temperature preparation, characterization, and photoluminescence measurements of solid solutions of various compositionally-defined single-crystalline alkaline-earth-metal tungstate nanorods. Chem. Mater. 20: 5500–5512.
  • Zhang, F., Yiu, Y., Aronson, M., and Wong, S. S. 2008b. Exploring the room-temperature synthesis and properties of multifunctional doped tungstate nanorods. J. Phys. Chem. C. 112: 14816–14824.
  • Zhang, H., Ji, Z., Xia, T., Meng, H., Low-Kam, C., Liu, R., Pokhrel, S., Lin, S., Wang, X., and Liao, Y.-P. 2012. Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation. ACS Nano 6: 4349–4368.
  • Zhao, J., and Castranova, V. 2011. Toxicology of nanomaterials used in nanomedicine. J. Toxicol. Environ. Health, B 14: 593–632.
  • Zhao, X., Heng, B. C., Xiong, S., Guo, J., Tan, T. T.-Y., Boey, F. Y. C., Ng, K. W., and Loo, J. S. C. 2011. In vitro assessment of cellular responses to rod-shaped hydroxyapatite nanoparticles of varying lengths and surface areas. Nanotoxicology 5: 182–194.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.