575
Views
65
CrossRef citations to date
0
Altmetric
Original Articles

Potential Toxicity of Differential Functionalized Multiwalled Carbon Nanotubes (MWCNT) in Human Cell Line (BEAS2B) and Caenorhabditis elegans

, , , , , & show all

REFERENCES

  • Bhattacharaya, K., Andon, F.T., El-Sayed, R., and Fadeel, B. 2013. Mechanisms of carbon nanotube-induced toxicity: Focus on pulmonary inflammation. Adv. Drug Deliv. Rev. 65: 2087–2097.
  • Brenner, S. 1974. The genetics of Caenorhabditis elegans. Genetics 77: 71–94.
  • Burke, A. R., Singh, R. N., Carroll, D. L., Owen, J. D., Kock, N. D., D’Agostino, R., Jr., Torti, F. M., and Torti, S. V. 2011. Determinants of the thrombogenic potential of multiwalled carbon nanotubes. Biomaterials 32: 5970–5978.
  • Bussy, C., Pinault, M., Cambedouzou, J., Landry, M. J., Jegou, P., Mayne-L’hermite, M., Launois, P., Boczkowski, J., and Lanone, S.2012. Critical role of surface chemical modifications induced by length shortening on multi-walled carbon nanotubes-induced toxicity. Part. Fibre Toxicol. 9: 46.
  • Cavallo, D., Fanizza, C., Ursini, C. L., Casciardi, S., Paba, E., Ciervo, A., Fresegna, A. M., Maiello, R., Marcelloni, A. M., Buresti, G., Tombolini, F., Bellucci, S., and Iavicoli, S. 2012. Multi-walled carbon nanotubes induce cytotoxicity and genotoxicity in human lung epithelial cells. J. Appl. Toxicol. 32: 454–464.
  • Chatterjee, N., Eom, H. J., Jung, S. H., Kim, J. S., and Choi, J. 2013. Toxic potentiality of bio-oils, from biomass pyrolysis, in cultured cells and Caenorhabditis elegans. Environ. Toxicol. doi:10.1002/tox.21871.
  • Clark, K. A., O’Driscoll, C., Cooke, C. A., Smith, B. A., Wepasnick, K., Fairbrother, D. H., Lees, P. S., and Bressler, J. P. 2012. Evaluation of the interactions between multiwalled carbon nanotubes and Caco-2 cells. J. Toxicol. Environ. Health A 75: 25–35.
  • Collins, A. 2004. The comet assay for DNA damage and repair. Mol. Biotechnol. 26: 249–261.
  • Coccini, T., Roda, E., Sarigiannis, D. A., Mustarelli, P., Quartarone, E., Profumo, A., and Manzo, L. 2010. Effects of water-soluble functionalized multi-walled carbon nanotubes examined by different cytotoxicity methods in human astrocyte D384 and lung A549 cells. Toxicology 269: 41–53.
  • Di Sotto, A., Chiaretti, M., Carru, G. A., Bellucci, S., and Mazzanti, G. 2009. Multi-walled carbon nanotubes: Lack of mutagenic activity in the bacterial reverse mutation assay. Toxicol. Lett. 184: 192–197.
  • Guo, N. L., Wan, Y. W., Denvir, J., Porter, D. W., Pacurari, M., Wolfarth, M. G., Castranova, V., and Qian, Y. 2012. Multiwalled carbon nanotube-induced gene signatures in the mouse lung: potential predictive value for human lung cancer risk and prognosis. J. Toxicol. Environ. Health A 75: 1129–1153.
  • He, X., Young, S. H., Schwegler-Berry, D., Chisholm, W. P., Fernback, J. E., and Ma,Q. 2011. Multiwalled carbon nanotubes induce a fibrogenic response by stimulating reactive oxygen species production, activating NF-kappaB signaling, and promoting fibroblast-to-myofibroblast transformation. Chem. Res. Toxicol. 24: 2237–2248.
  • Herzog, E., Casey, A., Lyng, F. M., Chambers, G., Byrne, H. J., and Davoren, M. 2007. A new approach to the toxicity testing of carbon-based nanomaterials-the clonogenic assay. Toxicol. Lett. 174: 49–60.
  • Jiang, Y., Zhang, H., Wang, Y., Chen, M., Ye, S., Hou, Z., and Ren, L. 2013. Modulation of apoptotic pathways of macrophages by surface-functionalized multi-walled carbon nanotubes. PLoS One 8: e65756.
  • Kayat, J., Gajbhiye, V., Tekade, R. K., and Jain, N. K. 2011. Pulmonary toxicity of carbon nanotubes: A systematic report. Nanomedicine 7: 40–49.
  • Kim, J. E., Lim, H. T., Minai-Tehrani, A., Kwon, J. T., Shin, J. Y., Woo, C. G., Choi, M., Baek, J., Jeong, D. H., Ha, Y. C., Chae, C. H., Song, K. S., Ahn, K. H., Lee, J. H., Sung, H.J., Yu, I. J., Beck, G. R., Jr., and Cho, M. H. 2010a. Toxicity and clearance of intratracheally administered multiwalled carbon nanotubes from murine lung. J. Toxicol. Environ. Health A 73: 1530–1543.
  • Kim, J. S., Song, K. S., Joo, H. J., Lee, J. H., and Yu, I. J. 2010b. Determination of cytotoxicity attributed to multiwall carbon nanotubes (MWCNT) in normal human embryonic lung cell (WI-38) line. J. Toxicol. Environ. Health A 73: 1521–1529.
  • Li, R., Wang, X., Ji, Z., Sun, B., Zhang, H., Chang, C. H., Lin, S., Meng, H., Liao, Y. P., Wang, M., Li, Z., Hwang, A. A., Song, T. B., Xu, R., Yang, Y., Zink, J. I., Nel, A. E., and Xia, T. 2013. Surface charge and cellular processing of covalently functionalized multiwall carbon nanotubes determine pulmonary toxicity. ACS Nano 7: 2352–2368.
  • Liang, G., Yin, L., Zhang, J., Liu, R., Zhang, T., Ye, B., and Pu,Y. 2010. Effects of subchronic exposure to multi-walled carbon nanotubes on mice. J. Toxicol. Environ. Health A 73: 463–470.
  • Lindberg, H. K., Falck, G. C., Suhonen, S., Vippola, M., Vanhala, E., Catalan, J., Savolainen, K., and Norppa, H. 2009. Genotoxicity of nanomaterials: DNA damage and micronuclei induced by carbon nanotubes and graphite nanofibres in human bronchial epithelial cells in vitro. Toxicol. Lett. 186: 166–173.
  • Liu, Y., Zhao, Y., Sun, B., and Chen, C. 2013. Understanding the toxicity of carbon nanotubes. Acc. Chem. Res. 46: 702–713.
  • Liu, Z., Dong, X., Song, L., Zhang, H., Liu, L., Zhu, D., Song, C., and Leng, X. 2014. Carboxylation of multiwalled carbon nanotube enhanced its biocompatibility with L02 cells through decreased activation of mitochondrial apoptotic pathway. J. Biomed. Mater. Res. A 102: 665–673.
  • Mishra, A., Rojanasakul, Y., Chen, B. T., Castranova, V., Mercer, R. R., and Wang, L. Y. 2012. Assessment of pulmonary fibrogenic potential of multiwalled carbon nanotubes in human lung cells. J. Nanomater. 2012: 1–11.
  • Muller, J., Decordier, I., Hoet, P. H., Lombaert, N., Thomassen, L., Huaux, F., Lison, D., and Kirsch-Volders, M. 2008. Clastogenic and aneugenic effects of multi-wall carbon nanotubes in epithelial cells. Carcinogenesis 29: 427–433.
  • Nouara, A., Wu, Q., Li, Y., Tang, M., Wang, H., Zhao, Y., and Wang, D. 2013. Carboxylic acid functionalization prevents the translocation of multi-walled carbon nanotubes at predicted environmentally relevant concentrations into targeted organs of nematode Caenorhabditis elegans. Nanoscale 5: 6088–6096.
  • Pacurari, M., Castranova, V., and Vallyathan, V. 2010. Single- and multi-wall carbon nanotubes versus asbestos: are the carbon nanotubes a new health risk to humans? J. Toxicol. Environ. Health A 73: 378–395.
  • Pacurari, M., Qian, Y., Fu, W., Schwegler-Berry, D., Ding, M., Castranova, V., and Guo, N. L. 2012. Cell permeability, migration, and reactive oxygen species induced by multiwalled carbon nanotubes in human microvascular endothelial cells. J. Toxicol. Environ. Health A 75: 112–128.
  • Roh, J. Y., Sim, S. J., Yi, J., Park, K., Chung, K. H., Ryu, D. Y., and Choi, J. 2009. Ecotoxicity of silver nanoparticles on the soil nematodeCaenorhabditis elegansusing functional ecotoxicogenomics. Environ. Sci. Technol. 43: 3933–3940.
  • Singh, N. P., McCoy, M. T., Tice, R. R., and Schneider, E. L. 1988. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 175: 184–191.
  • Snyder-Talkington, B. N., Qian, Y., Castranova, V., and Guo, N. L. 2012. New perspectives for in vitro risk assessment of multiwalled carbon nanotubes: Application of coculture and bioinformatics. J. Toxicol. Environ. Health B 15: 468–492.
  • Tabet, L., Bussy, C., Amara, N., Setyan, A., Grodet, A., Rossi, M. J., Pairon, J. C., Boczkowski, J., and Lanone, S. 2009. Adverse effects of industrial multiwalled carbon nanotubes on human pulmonary cells. J. Toxicol. Environ. Health A 72: 60–73.
  • Wang, X., Xia, T., Ntim, S. A., Ji, Z., Lin, S., Meng, H., Chung, C. H., George, S., Zhang, H., Wang, M., Li, N., Yang, Y., Castranova, V., Mitra, S., Bonner, J. C., and Nel, A. E. 2011. Dispersal state of multiwalled carbon nanotubes elicits profibrogenic cellular responses that correlate with fibrogenesis biomarkers and fibrosis in the murine lung. ACS Nano 5: 9772–9787.
  • Yu, K. N., Kim, J. E., Seo, H. W., Chae, C., and Cho, M. H. 2013. Differential toxic responses between pristine and functionalized multiwall nanotubes involve induction of autophagy accumulation in murine lung. J. Toxicol. Environ. Health A 76: 1281–1292.
  • Zhao, J., and Castranova, V. 2011. Toxicology of nanomaterials used in nanomedicine. J. Toxicol. Environ. Health B 14: 593–632.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.