270
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Determination of Adsorption Affinity of Nanoparticles for Interleukin-8 Secreted From A549 Cells by In Vitro Cell-Free and Cell-Based Assays

, , &
Pages 185-195 | Received 05 Aug 2014, Accepted 12 Aug 2014, Published online: 15 Dec 2014

REFERENCES

  • Asati, A., S. Santra, C. Kaittanis, and J. M. Perez. 2010. Surface-charge-dependent cell localization and cytotoxicity of cerium oxide nanoparticles. ACS Nano 4: 5321 –5331.
  • Bihari, P., M. Vippola, S. Schultes, M. Praetner, A. G. Khandoga, C. A. Reichel, C. Coester, T. Tuomi, M. Rehberg, and F. Krombach. 2008. Optimized dispersion of nanoparticles for biological in vitro and in vivo studies. Part. Fibre Toxicol. 5: 14.
  • Brown, D. M., C. Dickson, P. Duncan, F. Al-Attili, and V. Stone. 2010. Interaction between nanoparticles and cytokine proteins: impact on protein and particle functionality. Nanotechnology 21: 215104.
  • Casey, A., E. Herzog, M. Davoren, F. M. Lyng, H. J. Byrne, and G. Chambers. 2007. Spectroscopic analysis confirms the interactions between single walled carbon nanotubes and various dyes commonly used to assess cytotoxicity. Carbon 45: 1425 –1432.
  • Cho, W. S., R. Duffin, M. Bradley, I. L. Megson, W. Macnee, J. K. Lee, J. Jeong, and K. Donaldson. 2013. Predictive value of in vitro assays depends on the mechanism of toxicity of metal oxide nanoparticles. Part. Fibre Toxicol. 10: 55.
  • Cho, W. S., R. Duffin, C. A. Poland, S. E. Howie, W. MacNee, M. Bradley, I. L. Megson, and K. Donaldson. 2010. Metal oxide nanoparticles induce unique inflammatory footprints in the lung: important implications for nanoparticle testing. Environ. Health Perspect. 118: 1699 –1706.
  • Cho, W. S., F. Thielbeer, R. Duffin, E. M. Johansson, I. L. Megson, W. Macnee, M. Bradley, and K. Donaldson. 2014. Surface functionalization affects the zeta potential, coronal stability and membranolytic activity of polymeric nanoparticles. Nanotoxicology 8: 202 –211.
  • Clift, M. J., B. Rothen-Rutishauser, D. M. Brown, R. Duffin, K. Donaldson, L. Proudfoot, K. Guy, and V. Stone. 2008. The impact of different nanoparticle surface chemistry and size on uptake and toxicity in a murine macrophage cell line. Toxicol. Appl. Pharmacol. 232: 418 –427.
  • Duffin, R., L. Tran, D. Brown, V. Stone, and K. Donaldson. 2007. Proinflammogenic effects of low-toxicity and metal nanoparticles in vivo and in vitro: Highlighting the role of particle surface area and surface reactivity. Inhal. Toxicol. 19: 849 –856.
  • Guadagnini, R., B. Halamoda Kenzaoui, L. Cartwright, G. Pojana, Z. Magdolenova, D. Bilanicova, M. Saunders, L. Juillerat, A. Marcomini, A. Huk, M. Dusinska, L. M. Fjellsbo, F. Marano, and S. Boland. 2013. Toxicity screenings of nanomaterials: Challenges due to interference with assay processes and components of classic in vitro tests. Nanotoxicology. doi:10.3109/17435390.2013.829590
  • Holder, A. L., R. Goth-Goldstein, D. Lucas, and C. P. Koshland. 2012. Particle-induced artifacts in the MTT and LDH viability assays. Chem. Res. Toxicol. 25: 1885 –1892.
  • Horie, M., H. Kato, and H. Iwahashi. 2013. Cellular effects of manufactured nanoparticles: Effect of adsorption ability of nanoparticles. Arch. Toxicol. 87: 771 –781.
  • Huhn, D., K. Kantner, C. Geidel, S. Brandholt, I. De Cock, S. J. Soenen, P. Rivera Gil, J. M. Montenegro, K. Braeckmans, K. Mullen, G. U. Nienhaus, M. Klapper, and W. J. Parak. 2013. Polymer-coated nanoparticles interacting with proteins and cells: focusing on the sign of the net charge. CS Nano 7: 3253 –3263.
  • Kocbach, A., A. I. Totlandsdal, M. Lag, M. Refsnes, and P. E. Schwarze. 2008. Differential binding of cytokines to environmentally relevant particles: A possible source for misinterpretation of in vitro results? Toxicol. Lett. 176: 131 –137.
  • Koyama, S., E. Sato, T. Masubuchi, A. Takamizawa, K. Kubo, S. Nagai, and T. Izumi. 1998. Alveolar type II-like cells release G-CSF as neutrophil chemotactic activity. Am. J. Physiol. 275: L687 –L693.
  • Koyama, S., E. Sato, H. Nomura, K. Kubo, M. Miura, T. Yamashita, S. Nagai, and T. Izumi. 2000. The potential of various lipopolysaccharides to release IL-8 and G-CSF. Am. J. Physiol. Lung Cell. Mol. Physiol. 278: L658 –L666.
  • Kroll, A., M. H. Pillukat, D. Hahn, and J. Schnekenburger. 2012. Interference of engineered nanoparticles with in vitro toxicity assays. Arch. Toxicol. 86: 1123 –1136.
  • Li, R., X. Wang, Z. Ji, B. Sun, H. Zhang, C. H. Chang, S. Lin, H. Meng, Y. P. Liao, M. Wang, Z. Li, A. A. Hwang, T. B. Song, R. Xu, Y. Yang, J. I. Zink, A. E. Nel, and T. Xia. 2013. Surface charge and cellular processing of covalently functionalized multiwall carbon nanotubes determine pulmonary toxicity. ACS Nano 7: 2352 –2368.
  • Mercer, R. R., J. Scabilloni, L. Wang, E. Kisin, A. R. Murray, D. Schwegler-Berry, A. A. Shvedova, and V. Castranova. 2008. Alteration of deposition pattern and pulmonary response as a result of improved dispersion of aspirated single-walled carbon nanotubes in a mouse model. Am. J. Physiol. Lung Cell. Mol. Physiol. 294: L87 –L97.
  • Monteiller, C., L. Tran, W. MacNee, S. Faux, A. Jones, B. Miller, and K. Donaldson. 2007. The pro-inflammatory effects of low-toxicity low-solubility particles, nanoparticles and fine particles, on epithelial cells in vitro: The role of surface area. Occup. Environ. Med. 64: 609 –615.
  • Monteiro-Riviere, N. A., A. O. Inman, and L. W. Zhang. 2009. Limitations and relative utility of screening assays to assess engineered nanoparticle toxicity in a human cell line. Toxicol. Appl. Pharmacol. 234: 222 –235.
  • Monteiro-Riviere, N. A., and A. O. Inman. 2006. Challenges for assessing carbon nanomaterial toxicity to the skin. Carbon 44:1070 –1078.
  • Salvati, A., A. S. Pitek, M. P. Monopoli, K. Prapainop, F. B. Bombelli, D. R. Hristov, P. M. Kelly, C. Aberg, E. Mahon, and K. A. Dawson. 2013. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat. Nanotechnol. 8: 137 –143.
  • Shukla, R., T. P. Thomas, J. L. Peters, A. M. Desai, J. Kukowska-Latallo, A. K. Patri, A. Kotlyar, and J. R. Baker, Jr. 2006. HER2 specific tumor targeting with dendrimer conjugated anti-HER2 mAb. Bioconjugat. Chem. 17: 1109 –1115.
  • Silva, R. M., C. Teesy, L. Franzi, A. Weir, P. Westerhoff, J. E. Evans, and K. E. Pinkerton. 2013. Biological response to nano-scale titanium dioxide (TiO2): Role of particle dose, shape, and retention. J. Toxicol. Environ. Health A 76: 953 –972.
  • Singh, S., T. Shi, R. Duffin, C. Albrecht, D. van Berlo, D. Hohr, B. Fubini, G. Martra, I. Fenoglio, P. J. Borm, and R. P. Schins. 2007. Endocytosis, oxidative stress and IL-8 expression in human lung epithelial cells upon treatment with fine and ultrafine TiO2: Role of the specific surface area and of surface methylation of the particles. Toxicol. Appl. Pharmacol. 222: 141 –151.
  • Snyder-Talkington, B. N., Y. Qian, V. Castranova, and N. L. Guo. 2012. New perspectives for in vitro risk assessment of multiwalled carbon nanotubes: Application of coculture and bioinformatics. J. Toxicol. Environ. Health B 15: 468 –492.
  • Veranth, J. M., E. G. Kaser, M. M. Veranth, M. Koch, and G. S. Yost. 2007. Cytokine responses of human lung cells (BEAS-2B) treated with micron-sized and nanoparticles of metal oxides compared to soil dusts. Part. Fibre Toxicol. 4: 2.
  • Wang, L., V. Castranova, A. Mishra, B. Chen, R. R. Mercer, D. Schwegler-Berry, and Y. Rojanasakul. 2010. Dispersion of single-walled carbon nanotubes by a natural lung surfactant for pulmonary in vitro and in vivo toxicity studies. Part. Fibre Toxicol. 7: 31.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.