500
Views
32
CrossRef citations to date
0
Altmetric
Original Articles

Effect of temperature on oxidative stress parameters and enzyme activity in tissues of Cape River crab (Potamanautes perlatus) following exposure to silver nanoparticles (AgNP)

, , &
Pages 61-70 | Received 21 Sep 2015, Accepted 07 Oct 2015, Published online: 05 Jan 2016

References

  • Abele, D., Heise, K., Pörtner, H. O., and Puntarulo, S. 2002. Temperature-dependence of mitochondrial function and production of reactive oxygen species in the intertidal mud clam Mya arenaria. J. Exp. Biol. 205: 1831–1841.
  • Ahmed, R. G. 2005. Is there a balance between oxidative stress and antioxidant defense system during development. Med. J. Islamic World Acad. Sci. 15: 55–63.
  • Bates, B. C., Kundzewicz, Z. W., Wu, S., and Palutikof, J. P., eds. 2008: Climate change and water. Technical paper of the Intergovernmental Panel on Climate Change, IPCC Secretariat, Geneva, Switzerland.
  • Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal. Biochem. 72: 248–254.
  • Blaser, S. A., Scheringer, M., MacLeod, M., and Hungerbühler, K. 2008. Estimation of cumulative aquatic exposure and risk due to silver: Contribution of nano–functionalized plastics and textiles. Sci. Total Environ. 390: 396–409.
  • Elumalai, M., and Balasubramanian, M. P. 1999. Influence of naphthalene on esterase activity during vitellogenesis of marine edible crab, Scylla serrata. Bull. Environ. Contam. Toxicol. 62: 743–748.
  • Falfushynska, H., Gnatyshyna, L., Yurchak, I., and Sokolova, I. 2015. The effects of zinc nanooxide on cellular stress responses of the freshwater mussels Unio tumidus are modulated by elevated temperature and organic pollutants. Aquat. Toxicol. 162: 82–93.
  • Freire, C. A., Welker, A. F., Storey, J. M., Storey, K. B., and Hermes-Lima, M. 2011. Oxidative stress in estuarine and intertidal environments (temperate and tropical). In Oxidative stress in aquatic ecosystems, ed. D. Abele, J.P. Vázquez-Medina, and T. Zenteno-Savin, 41–57. John Wiley & Sons Ltd.
  • Gagné, F., Auclair, J., Turcotte, P., and Gagnon C. 2013a. Sublethal effects of silver nanoparticles and dissolved silver in freshwater mussels. J. Toxicol Environ. Health A 76: 479–490.
  • Gagné, F., Auclair, J., Fortier, M., Bruneau, A., Fournier, M., Turcotte, P., Pilote, M., and Gagnon, C. 2013b. Bioavailability and immunotoxicity of silver nanoparticles to the freshwater mussel Elliptio complanata. J. Toxicol Environ. Health A 76: 767–777.
  • Gaiser, B. K., Fernandes, T. F., Jepson, M. A., Lead, J. R., Tyler, C. R., Baalousha, M., Biswas, A., Britton, G .J., Cole, P. A., Johnston, B. D., Ju-Nam, Y., Rosenkranz, P., Scown, T. M., and Stone, B. D. 2012. Interspecies comparisons on the uptake and toxicity of silver and cerium dioxide nanoparticles. Environ. Toxicol. Chem. 31: 144–154.
  • Gomes, S. I. L., Hansen, D., Scott-Fordsmand, J. J., and Amorim, M. J. B. 2015. Effects of silver nanoparticles to soil invertebrates: Oxidative stress biomarkers in Eisenia fetida. Environ. Pollut. 199: 49–55.
  • Griffit, R. J., Brown-Peterson, N. J., Savin, D. A., Manning, C. S., Boube, I., Ryan, R. A., and Brouwer, M. 2012. Effects of chronic nanoparticulate silver exposure to adult and juvenile sheepshead minnows (Cyprinodon variegatus). Environ. Toxicol. Chem. 31: 160–167.
  • Gubbins, E. J., Batty, L. C. and Lead, J. R. 2011. Phytotoxicity of silver nanoparticles to Lemna minor L. Environ. Pollut. 159: 1551–1559.
  • Halliwell, B. 1994. Free radicals, antioxidants and human disease: Curiosity, cause or consequence. Lancet 344: 721–724.
  • Halliwell, B., and Gutteridge, J. M. 1999. Free radicals in biology and medicine. New York, NY: Oxford University Press, New York.
  • Halliwell, B., and Gutteridge, J. M. C. 2007. Free radicals in biology and medicine. 4th ed. Oxford, UK: Oxford University Press.
  • Hao, L., Wang, Z., and Xing, B. 2009. Effect of sub-acute exposure to TiO2 nanoparticles on oxidative stress and histopathological changes in juvenile carp (Cyprinus carpio). J. Environ. Sci. 21: 1459–1466.
  • Hayashi, Y., Engelmann, P., Foldbjerg, R., Szabo, M., Somogyi, I., Pollak, E., Molnar, L., Autrup, H., Sutherland, D. S., Scott-Fordsmand, J., and Heckmann, L. H. 2012. Earthworms and humans in vitro: Characterizing evolutionarily conserved stress and immune responses to silver nanoparticles. Environ. Sci. Technol. 46: 4166–4173.
  • Intergovernmental Panel on Climate Change. 2007. Climate change 2007: The physical science basis. In Contribution of Working Group I to the 4th assessment report of the Intergovernmental Panel on Climate Change, ed. S. Solomon, D. Qin, M. Manning, Z. Chen, et al. Cambridge, UK: Cambridge University Press.
  • Jayaseelan, C., Rahuman, A. A., Ramkumar, R., Perumal, P., Rajakumar, G., Kirthi, A. V., Santhoskumar, T., and Marimuthu, S. 2014. Effect of sub-acute exposure to nickel nanoparticles on oxidative stress and histopathological changes in Mozambique tilapia, Oreochromis mossambicus. Ecotoxicol. Environ. Safety 107: 220–228.
  • Lapresta-Fernández, A., Fernández, A., and Blasco, J. 2012. Nanoecotoxicity effects of engineered silver and gold nanoparticles in aquatic organisms. Trends Anal. Chem. 32: 40–59.
  • Lavarias, S. L., Heras, H., Pedrini, N., Tournier, H., and Ansaldo, M. 2011. Antioxidant response and oxidative stress levels in Macrobrachium borellii (Crustacea: Palaemonidae) exposed to the water-soluble fraction of petroleum. Comp. Biochem. Physiol. C 153: 415–421.
  • Levard, C., Hotze, E. M., Lowry, G. V., and Brown, G. E. 2012. Environmental transformations of silver nanoparticles: Impact on stability and toxicity. Environ. Sci. Technol. 46: 6900–6914.
  • Livingstone, D. R. 1998. The fate of organic xenobiotics in aquatic ecosystems: quantitative and qualitative differences in biotransformation by invertebrates and fish. Comp. Biochem. Physiol. A 120: 43–49.
  • Lushchak, V. I. 2011. Environmentally induced oxidative stress in aquatic animals. Aquat. Toxicol. 101: 13–30.
  • Madeira, D., Narciso, L., Cabral, H. N., Vinagre, C., and Diniz, M. S. 2013. Influence of temperature in thermal and oxidative stress responses in estuarine fish. Comp. Biochem. Physiol. A 166: 237–243.
  • Massarsky, A. 2014. Characterizing the biochemical and toxicological effects of nanosilver in vivo using zebrafish (Danio rerio) and in vitro using rainbow trout (Oncorhynchus mykiss). PhD thesis, University of Ottawa, Ottawa, ON, Canada.
  • Massarsky, A., Abraham, R., Nguyen, K. C., Rippstein, P., and Tayabali, A. F. 2014. Nanosilver cytotoxicity in rainbow trout (Oncorhynchus mykiss) eryhtocytes and hepatocytes. Comp. Biochem. Physiol. C. 159: 10–21.
  • Moore, M. N. 2006. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ. Int. 32: 967–976.
  • Navarro, E., Piccapietra, F., Wagner, B., Marconi, F., Kaegi, R., Odzak, N., Sigg, L., and Behra, R. 2008. Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ. Sci. Technol. 42: 8959–8964.
  • Novo, M. S., Miranda, R. B., and Bianchini, A. 2005. Sexual and seasonal variations in osmoregulation and ion regulation in the estuarine crab Chasmagnathus granulatus (Crustacea, Decapoda). J. Exp. Mar. Biol. Ecol. 323: 118–137.
  • Oberdörster, G., Castranova, V., Asgharian, B., and Sayres, P. 2015. Inhalation exposure to carbon nanotubes (CNT) and carbon nanofibers (CNF): Methodology and dosimetry. J. Toxicol. Environ. Health B 18: 121–212.
  • Pack, E. C., Kim, C. H., Lee, S. H., Lim, C. H., Sung, D. G., Kim, M. H., Park, K. H., Hong, S.-S., Lim, K. M., Choi, D. W., and Kim, S. W. 2014. Effects of environmental temperature change on mercury absorption in aquatic organisms with respect to climate warming. J. Toxicol. Environ. Health A 77: 1477–1490.
  • Paital, B., and Chainy, G. B. N. 2010. Antioxidant defences and oxidative stress parameters in tissues of mud crab (Scylla serrata) with reference to changing salinity. Comp. Biochem. Physiol.C. 151: 142–151.
  • Paital, B., and Chainy, G. B. N. 2013. Seasonal variability of antioxidant biomarkers in mud crabs (Scylla serrata). Ecotoxicol. Environ. Safety 87: 33–41.
  • Pan, L., and Zhang, H. 2006. Metallothionein, antioxidant enzymes and DNA strand breaks as biomarkers of Cd exposure in a marine crab, Charybdis japonica. Comp. Biochem. Physiol. C 144: 67–75.
  • Pan, L. Q., Ren, J. Y., and Wu, Z. W. 2004 Effects of heavy metal ions on SOD, CAT activities of hepatopancreas and gill of the crab Eriocheir sinensis. J. Ocean. 34: 189–194.
  • Park, K. 2013. Toxicokinetic differences and toxicities of silver nanoparticles and silver ions in rats after single oral administration. J. Toxicol. Environ. Health A 76: 1246–1260.
  • Park, S.-Y., and Choi, J. 2010, Geno- and ecotoxicity evaluation of silver nanoparticles in freshwater crustacean Daphnia magna. Environ. Eng. Res. 15: 23–27.
  • Pereira, P., Pablo, H., Subida, M.D., Vale, C., and Pacheco, M., 2009. Biochemical responses of the shore crab (Carcinus maenas) in a eutrophic and metal-contaminated coastal system (Óbidos lagoon, Portugal). Ecotoxicol. Environ. Safety 72: 1471–1480.
  • Pham, C. H., Yi, J., and Gu, M. B. 2012. Biomarker gene response in male Medaka (Oryzias latipes) chronically exposed to silver nanoparticle. Ecotoxicol. Environ. Safety 78: 239–245.
  • Piao, M. J., Kang, K. A., Lee, I. K., Kim, H. S., Kim, S., Choi, J. Y., Choi, J., and Hyun, J. W. 2011. Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicol. Lett. 201: 92–100.
  • Pinho, G. L. L., de Rosa, C. M., Yunes, J. S., Luquet, C. M., Bianchini, A., and Monserrat, J. M. 2003. Toxic effects of microcystins in the hepatopancreas of the estuarine crab Chasmagnathus granulatus (Decapoda, Grapsidae). Comp. Biochem. Physiol. 135: 459–468.
  • Pinho, G. L. L., Da Rousa, C. M., Maciel, F. E., Bianchini, A., Yunes, J. S., Proenca, L. A. O., and Moserrat, J. M. 2005. Antioxidant responses and oxidative stress after microcystin exposure in the hepatopancreas of an estuarine crab species. Ecotoxicol. Environ. Safety 61: 353–360.
  • Piccinno, F., Gottschalk, F., Seeger, S., and Nowack, B. 2012. Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J. Nanopart Res. 14: 1109–1119.
  • Qin, Q., Qin, S., Wang, L. and Lei, W. 2012. Immune responses and ultrastructural changes of hemocytes in freshwater crab. Aquat. Toxicol. 106–107:140–146.
  • Reinecke, A. J., Snyman, R. G., and Nel, J. A. J. 2003. Uptake and distribution of lead (Pb) and cadmium (Cd) in the freshwater crab Potamautes perlatus (Crustacea) in the Eerst River, South Africa. Water Air Soil Pollut. 145: 395–408.
  • Scown, T. M., Santos, E., Johnston, B. D., Gaiser, B., Baalousha, M., Mitov, S., Lead, J. R., Stone, V., Fernandes, T. F., Jepson, M., van Aerle, R., and Tyler, C. R. 2010. Effects of aqueous exposure to silver nanoparticles of different sizes in rainbow trout. Toxicol. Sci. 115: 521–534.
  • Sies, H. 1993. Strategies of antioxidant defense. Eur. J. Biochem. 215: 213–219.
  • Snyman, R. G., Reinecke, A. J., and Nel, J. A. J. 2002. Uptake and distribution of copper in the freshwater crab, Potamonautes perlatus (Crustacea) in the Eerste River, South Africa. Afr. Zool. 37: 81–89.
  • Vander, O. R., Beyer, J., and Vermeulen, N. P. E., 2003. Fish bioaccumulation and biomarkers in environmental risk assessment: A review. Environ. Toxicol. Pharmacol. 13: 57–149.
  • Vijayavel, K., and Balasubramanian, M. P. 2006. Fluctuations of biochemical constituent and marker enzymes as a consequence of naphthalene toxicity in the edible estuarine crab, Scylla serrata. Ecotoxicol. Environ. Safety 63: 141–147.
  • Vinagre, C., Madeira, D., Narciso, L., Cabral, H., and Diniz, M. 2012. Effect of temperature on oxidative stress in fish: Lipid peroxidation and catalase activity in the muscle of juvenile seabass, Dicentrarchus labrax. Ecol. Indicat. 23: 274–279.
  • Vinagre, C., Madeira, D., Mendonca, V., Dias, M., Roma, J. and Diniz, M. 2014. Effect of increasing temperature in the differential activity of oxidative stress biomarkers in various tissues of the Rock goby, Gobius paganellus. Mar. Environ. Res. 97: 10–14.
  • Walters, C., Pool, E., and Somerset, V. 2013. Aggregation and dissolution of silver nanoparticles in a laboratory-based freshwater microcosm under simulated environmental conditions. Toxicol. Environ. Chem. 95: 10.
  • Wang, W., Wang, A., Liu, Y., Xiu, J., Liu, Z., and Sun, R. 2006. Effects of temperature on growth, adenosine phosphates, ATPase and cellular defense response of juvenile shrimp Macrobrachium nipponense. Aquaculture 256: 624–630.
  • Zhang, J. F., Sun, Y. Y., Shen, B., Liu, H., Wang, X. R., Wu, J. C., and Xue, Y. Q. 2004. Antioxidant response of Daphnia magna exposed to no. 20 diesel oil. Chem. Spec. Bioavailab. 16: 139–144.
  • Zhao, C.-M., and Wang, W.-E., 2010. Biokinetic uptake and efflux of silver nanoparticles in Daphnia magna. Environ. Sci. Technol. 44: 7699–7704.
  • Zhao, J., and Castranova, V. 2011. Toxicology of nanomaterials used in nanomedicine. J. Toxicol. Environ. Health B 14: 593–632.
  • Zhu, X., Zhou, J., and Cai, Z. 2011. The toxicity and oxidative stress of TiO2 nanoparticles in marine abalone (Haliotis diversicolor supertexta). Mar. Pollut. Bull. 63: 334–338.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.