269
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Modifications of carbon black nanoparticle surfaces modulate type II pneumocyte homoeostasis

, , , , , & show all
Pages 153-164 | Received 02 Jul 2015, Accepted 23 Nov 2015, Published online: 25 Feb 2016

References

  • Adamson, I. Y. R., and Bowden, D. H. 1975. Derivation of type I epithelium from type II cells in the developing rat lung. Lab. Invest. 32: 736–745.
  • Anderson, J. O., Thundiyil, J. G., and Stolbach, A. 2011. Clearing the air: A review of the effects of particulate matter air pollution on human health. J. Med. Toxicol. 8: 166–175.
  • Bartlett, G. R. 1959. Phosphorus assay in column chromatography. J. Biol. Chem. 234: 466–468.
  • Bourdon, J. A., Saber, A. T., Jacobsen, N. R., Jensen, K. A., Madsen, A. M., Lamson, J. S., Wallin, H., Møller, P., Loft, S., Yauk, C. L., and Vogel, U. B. 2012. Carbon black nanoparticle instillation induces sustained inflammation and genotoxicity in mouse lung and liver. Part. Fibre Toxicol. 9: 5.
  • Bourdon, J. A., Williams, A., Kuo, B., Moffat, I., White, P. A., Halappanavar, S., Vogel, U., Wallin, H., and Yauk, C. L. 2013. Gene expression profiling to identify potentially relevant disease outcomes and support human health risk assessment for carbon black nanoparticle exposure. Toxicology 303: 83–93.
  • Ceresana, Market Intelligence, Consulting, 2014. Market study: Carbon BLack (UC-5605). http://www.ceresana.com/en/market-studies/chemicals/carbon-black/ceresana-market-study-carbon-black.html ( accessed November 26, 2014).
  • Corti, M., Brody, A. R., and Harrison, J. H. 1996. Isolation and primary culture of murine alveolar type II cells. Am J. Respir. Cell Mol. Biol. 14: 309–315.
  • Crapo, J. D., Barry, B. E., Gehr, P., Bachofen, M., and Weibel, E. R. 1982. Cell number and cell characteristics of normal human lung. Am. Rev. Respir. Dis. 125: 332–337.
  • Dhawan, A., and Sharma, V. 2010. Toxicity assessment of nanomaterials: Methods and challenges. Anal. Bioanal. Chem. 398: 589–605.
  • Dumortier, H., Lacotte, S., Pastorin, G., Marega, R., Wu, W., Bonifazi, D., Briand, J. P., Prato, M., Muller, S., and Bianco, A. 2006. Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells. Nano Lett. 6: 1522–1528.
  • Dutta, D., Sundaram, S. K., Teeguarden, J. G., Riley, B. J., Fifield, L. S., Jacobs, J. M., Addleman, S. R., Kaysen, G. A., Moudgil, B. M., and Weber, T. J. 2007. Adsorbed proteins influence the biological activity and molecular targeting of nanomaterials. Toxicol. Sci. 100: 303–315.
  • Gumbleton, M. 2001. Caveolae as potential macromolecule trafficking compartments within alveolar epithelium. Adv. Drug Deliv. Rev. 49: 281–300.
  • Hamm, H., Kroegel, C., and Hohlfeld, J. 1996. Surfactant: A review of its functions and relevance in adult respiratory disorders. Respir. Med. 90: 251–270.
  • Han, S. G., Howatt, D., Daugherty, A., and Gairola, G. 2015. Pulmonary and atherogenic effects of multi-walled carbon nanotubes (MWCNT) in apolipoprotein-E-deficient mice. J. Toxicol. Environ. Health A 78: 244–253.
  • International Agency for Research on Cancer/World Health Organization. 2010. Carbon black, titanium dioxide, and talc. IARC Monogr. Eval. Carcinogen. Risks Hum. 93. http://monographs.iarc.fr/ENG/Monographs/vol93 ( accessed September 16, 2014).
  • Jackson, P., Hougaard, K. S., Vogel, U., Wu, D., Casavant, L., Williams, A., Wade, M., Yauk, C. L., Wallin, H., and Halappanavar, S. 2012. Exposure of pregnant mice to carbon black by intratracheal instillation: Toxicogenomic effects in dams and offspring. Mutat. Res. 745: 73–83.
  • Junqueira, L. C., Bignolas, G., and Brentani, R. R. 1979. Picrosirius staining plus polarization microscopy, a specific method for collagen detection in tissue sections. Histochem. J. 11: 447–455.
  • Kamata, H., Tasaka, S., Inoue, K., Miyamoto, K., Nakano, Y., Shinoda, H., Kimizuka, Y., Fujiwara, H., Ishii, M., Hasegawa, N., Takamiya, R., Fujishima, S., Takano, H., and Ishizaka, A. 2011. Carbon black nanoparticles enhance bleomycin-induced lung inflammatory and fibrotic changes in mice. Exp. Biol. Med. 236: 315–324.
  • Kendall, M., Brown, L., and Trought, K. 2004. Molecular adsorption at particle surfaces: A PM toxicity mediation mechanism. Inhal. Toxicol. 16: 99–105.
  • Kim, H., Oh, S. J., Kwak, H. C., Kim J. K., Lim, C. H., Yang, J. S., Park, K., Kim, S. K., and Lee, M. Y. 2012. The impact of intratracheally instilled carbon black on the cardiovascular system of rats: elevation of blood homocysteine and hyperactivity of platelets. J. Toxicol. Environ. Health A 75: 1471–1483.
  • Kinnula V. L., and Crapo, J. D. 2003. Superoxide dismutases in the lung and human lung diseases. Am. J. Respir. Crit. Care Med. 167: 1600–1619.
  • Kyjovska, Z. O., Jacobsen, N. R., Saber, A. T., Bengtson, S., Jackson, P., Wallin, H., and Vogel, U. 2015. DNA damage following pulmonary exposure by instillation to low doses of carbon black (Printex®90) nanoparticles in mice. Environ. Mol. Mutagen. 56: 41–49.
  • Lakatos, H. F., Burgess, H. A., Thatcher, T. H., Redonnet, M. R., Hernady, E., Williams, J. P., and Sime, P. J. 2006. Oropharyngeal aspiration of a silica suspension produces a superior model of silicosis in the mouse when compared to intratracheal instillation. Exp. Lung Res. 32: 181–199.
  • Livak, K. J., and Schmittgen, T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(–delta delta C(T)) method. Methods 25: 402–408.
  • Long, C. M., Nascarella, M. A., and Valberg, P. A. 2013. Carbon black vs. black carbon and other airborne materials containing elemental carbon: Physical and chemical distinctions. Environ. Pollut. 181: 271–286.
  • Nassimi, M., Schleh, C., Lauenstein, H. D., Hussein, R., Hoymann, H. G., Koch, W., Pohlmann, G., Krug, N., Sewald, K., Rittinghausen, S., Braun, A., and Müller-Goymann, C. 2010. A toxicological evaluation of inhaled solid lipid nanoparticles used as a potential drug delivery system for the lung. Eur. J. Pharm. Biopharm. 75: 107–116.
  • Niwa, Y., Hiura, Y., Sawamura, H., and Iwai, N. 2008. Inhalation exposure to carbon black induces inflammatory response in rats. Circ. J. 72: 144–149.
  • Organ, L., Bacci, B., Koumoundouros, E., Barcham, G., Milne, M., Kimpton, W., Samuel, C., and Snibson, K. 2015. Structural and functional correlations in a large animal model of bleomycin-induced pulmonary fibrosis. Pulmon. Med. 15: 81.
  • Rao, G. V., Tinkle, S., Weissman, D. N., Antonini, J. M., Kashon, M. L., Salmen, R., Battelli, L. A., Willard, P. A., Hoover, M. D., and Hubbs, A. F. 2003. Efficacy of a technique for exposing the mouse lung to particles aspirated from the pharynx. J. Toxicol. Environ. Health A 66: 1441–1452.
  • Renwick, L. C., Brown, D., Clouter, A., and Donaldson, K. 2004. Increased inflammation and altered macrophage chemotactic responses caused by two ultrafine particle types. Occup. Environ. Med. 61: 442–447.
  • Roursgaard, M., Jensen, K. A., Poulsen, S. S., Jensen, N. E., Poulsen, L. K., Hammer, M., Nielsen, G. D., and Larsen, S. T. 2011. Acute and subchronic airway inflammation after intratracheal instillation of quartz and titanium dioxide agglomerates in mice. Sci. World J. 11: 801–825.
  • Ruenraroengsak, P., Novak, P., Berhanu, D., Thorley, A. J., Valsami-Jones, E., Gorelik, J., Korchev, Y. E., and Tetley, T. D. 2012. Respiratory epithelial cytotoxicity and membrane damage (holes) caused by amine-modified nanoparticles. Nanotoxicology 6: 94–108.
  • Saber, A. T., Jensen, K. A., Jacobsen, N. R., Birkedal, R., Mikkelsen, L., Møller, P., Loft, S., Wallin, H., and Vogel, U. 2012. Inflammatory and genotoxic effects of nanoparticles designed for inclusion in paints and lacquers. Nanotoxicology. 6: 453–471.
  • Saber, A. T., Lamson, J. S., Jacobsen, N. R., Ravn-Haren, G., Hougaard, K. S., Nyendi, A. N., Wahlberg, P., Madsen, A. M., Jackson, P., Wallin, H., and Vogel, U. 2013. Particle-induced pulmonary acute phase response correlates with neutrophil influx linking inhaled particles and cardiovascular risk. PLoS ONE 8: e69020.
  • Salvador-Morales, C., Townsend, P., Flahaut, E., Vénien-Bryan, C., Vlandes, A., Green, M. L. H., and Sim, R. B. 2007. Binding of pulmonary surfactant proteins to carbon nanotubes: Potential for damage to lung immune defense mechanisms. Carbon 45: 607–617.
  • Sayes, C. M., Liang, F., Hudson, J. L., Mendez, J., Guo, W., Beach, J. M., Moore, V. C., Doyle, C. D., West, J. L., Billups, W. E., Ausman, K. D., and Colvin, V. L. 2006. Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicol. Lett. 161: 135–142.
  • Schreiber, N., Ströbele, M., Kopf, J., Hochscheid, R., Kotte, E., Weber, P., Hansen, T., Bockhorn, H., and Müller, B. 2013. Lung alterations following single or multiple low-dose carbon black nanoparticle aspirations in mice. J. Toxicol. Environ. Health A 76: 1317–1332.
  • Shimada, A., Kawamura, N., Okajima, M., Kaewamatawong, T., Inoue, H., and Morita, T. 2006. Translocation pathway of the intratracheally instilled ultrafine particles from the lung into the blood circulation in the mouse. Toxicol. Pathol. 34: 949–957.
  • Sibille, Y., and Reynolds, H. Y. 1990. Macrophages and polymorphonuclear neutrophils in lung defense and injury. Am. Rev. Respir. Dis. 141: 471–501.
  • Stoeger, T., Reinhard, C., Takenaka, S., Schroeppel, A., Karg, E., Ritter, B., Heyder, J., and Schulz, H. 2006. Instillation of six different ultrafine carbon particles indicates a surface area threshold dose for acute lung inflammation in mice. Environ. Health Perspect. 114: 328–333.
  • Stone, V., Johnston, H., and Schins, R. P. F. 2009. Development of in vitro systems for nanotoxicology: Methodological considerations. Crit. Rev. Toxicol. 39: 613–626.
  • Wang, L., Mercer, R. R., Rojanasakul, Y., Qiu, A., Lu, Y. Scabilloni, J. F., Wu, N., and Castranova, V. 2010. Direct fibrogenic effects of dispersed single-walled carbon nanotubes on human lung fibroblasts. J. Toxicol. Environ. Health A 73: 410–422.
  • Wright, J. R. 1997. Immunomodulatory functions of surfactant. Physiol. Rev. 77: 931–962.
  • Wright, J. R., and Hawgood, S. 1989. Pulmonary surfactant metabolism. Clin. Chest. Med. 10: 83–93.
  • Yu, K. N., Kim, J. E., Seo, H. W., Chae, C., and Cho, M. H. 2013. Differential toxic responses between pristine and functionalized multiwall nanotubes involve induction of autography accumulation in murine lung. J. Toxicol. Environ. Health A 76: 1282–1292.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.