281
Views
27
CrossRef citations to date
0
Altmetric
Original Articles

Impacts of prenatal nanomaterial exposure on male adult Sprague-Dawley rat behavior and cognition

, , , , , , , , & show all
Pages 447-452 | Received 26 Feb 2016, Accepted 07 Mar 2016, Published online: 19 Apr 2016

References

  • Blum, J. L., Edwards, J. R., Prozialeck, W. C., Xiong, J. Q., and Zelikoff, J. T. 2015. Effects of maternal exposure to cadmium oxide nanoparticles during pregnancy on maternal and offspring kidney injury markers using a murine model. J. Toxicol. Environ. Health A 78: 711–724
  • Cryan, J. F., Markou, A., and Lucki, I. 2002. Assessing antidepressant activity in rodents: Recent developments and future needs. Trends Pharmacol. Sci. 23: 238–245.
  • Cui, Y., Chen, X., Zhou, Z., Lei, Y., Ma, M., Cao, R., Sun, T., Xu, J., Huo, M., Cao, R., Wen, C., and Che, Y. 2014. Prenatal exposure to nanoparticulate titanium dioxide enhances depressive-like behaviors in adult rats. Chemosphere 96: 99–104.
  • Cupaioli, F. A., Zucca, F. A., Boraschi, D., and Zecca, L. 2014. Engineered nanoparticles. How brain friendly is this new guest? Prog. Neurobiol. 119–120:20–38.
  • D’Hooge, R., and De Deyn, P. P. 2001. Applications of the Morris water maze in the study of learning and memory. Brain Res. Brain Res. Rev. 36: 60–90.
  • Engler-Chiurazzi, E., Tsang, C., Nonnenmacher, S., Liang, W. S., Corneveaux, J. J., Prokai, L., Huentelman, M. J., and Bimonte-Nelson, H. A. 2011. Tonic premarin dose-dependently enhances memory, affects neurotrophin protein levels and alters gene expression in middle-aged rats. Neurobiol. Aging 32: 680–697.
  • Engler-Chiurazzi, E. B., Talboom, J. S., Braden, B. B., Tsang, C. W., Mennenga, S., Andrews, M., Demers, L. M., and Bimonte-Nelson, H. A. 2012. Continuous estrone treatment impairs spatial memory and does not impact number of basal forebrain cholinergic neurons in the surgically menopausal middle-aged rat. Horm. Behav. 62: 1–9.
  • Hamm, R. J., Pike, B. R., O’Dell, D. M., Lyeth, B. G., and Jenkins, L. W. 1994. The rotarod test: An evaluation of its effectiveness in assessing motor deficits following traumatic brain injury. J. Neurotrauma 11: 187–196.
  • Hougaard, K. S., Campagnolo, L., Chavatte-Palmer, P., Tarrade, A., Rousseau-Ralliard, D., Valentino, S., Park, M. V., de Jong, W. H., Wolterink, G., Piersma, A. H., Ross, B. L., Hutchison, G. R., Hansen, J. S., Vogel, U., Jackson, P., Slama, R., Pietroiusti, A., and Cassee, F. R. 2015. A perspective on the developmental toxicity of inhaled nanoparticles. Reprod. Toxicol. 56: 118–140.
  • Hougaard, K. S., Jackson, P., Jensen, K. A., Sloth, J. J., Loschner, K., Larsen, E. H., Birkedal, R. K., Vibenholt, A., Boisen, A. M., Wallin, H., and Vogel, U. 2010. Effects of prenatal exposure to surface-coated nanosized titanium dioxide (UV-Titan). A study in mice. Part Fibre. Toxicol. 7: 16.
  • Huynh, T. N., Krigbaum, A. M., Hanna, J. J., and Conrad, C. D. 2011. Sex differences and phase of light cycle modify chronic stress effects on anxiety and depressive-like behavior. Behav. Brain Res. 222: 212–222.
  • Jackson, P., Vogel, U., Wallin, H., and Hougaard, K. S. 2011. Prenatal exposure to carbon black (printex 90): Effects on sexual development and neurofunction. Basic Clin. Pharmacol. Toxicol. 109: 434–437.
  • Jarrard, L. E., Okaichi, H., Steward, O., and Goldschmidt, R. B. 1984. On the role of hippocampal connections in the performance of place and cue tasks: Comparisons with damage to hippocampus. Behav. Neurosci. 98: 946–954.
  • Kao, Y. Y., Cheng, T. J., Yang, D. M., Wang, C. T., Chiung, Y. M., and Liu, P. S. 2012. Demonstration of an olfactory bulb-brain translocation pathway for ZnO nanoparticles in rodent cells in vitro and in vivo. J. Mol. Neurosci. 48: 464–471.
  • LeBlanc, A. J., Cumpston J. L., Chen, B. T., Frazer, D., Castranova, V., and Nurkiewicz, T. R. 2009. Nanoparticle inhalation impairs endothelium-dependent vasodilation in subepicardial arterioles. J. Toxicol. Environ. Health A 72: 1576–1584.
  • Li, Y., Li, J., Yin, J., Li, W., Kang, C., Huang, Q., and Li, Q. 2010. Systematic influence induced by 3 nm titanium dioxide following intratracheal instillation of mice. J. Nanosci. Nanotechnol 10: 8544–8549.
  • Makri A., Goveia M., Balbus J., and Parkin R. Children’s susceptibility to chemicals: A review by developmental stage. J. Toxicol. Environ. Health B 7: 417–435.
  • Mohammadipour, A., Fazel, A., Haghir, H., Motejaded, F., Rafatpanah, H., Zabihi, H., Hosseini, M., and Bideskan, A. E. 2014. Maternal exposure to titanium dioxide nanoparticles during pregnancy; impaired memory and decreased hippocampal cell proliferation in rat offspring. Environ. Toxicol. Pharmacol. 37: 617–625.
  • Morris, R. 1984. Developments of a water-maze procedure for studying spatial learning in the rat. J. Neurosci. Methods 11: 47–60.
  • Oberdorster, G., Sharp, Z., Atudorei, V., Elder, A., Gelein, R., Kreyling, W., and Cox, C. 2004. Translocation of inhaled ultrafine particles to the brain. Inhal. Toxicol. 16: 437–445.
  • Oberdörster, G., Castranova, V., Asgharian, B., and Sayre, P. 2015. Inhalation exposure to carbon nanotubes (CNT) and carbon nanofibers (CNF): Methodolgy and dosimetry. J. Toxicol. Environ. Health B 18: 121–211.
  • Rosenfeld, C. S., and Ferguson, S. A. 2014. Barnes maze testing strategies with small and large rodent models. J. Vis. Exp. 84: e51194.
  • Semmler-Behnke, M., Lipka, J., Wenk, A., Hirn, S., Schaffler, M., Tian, F., Schmid, G., Oberdorster, G., and Kreyling, W. G. 2014. Size dependent translocation and fetal accumulation of gold nanoparticles from maternal blood in the rat. Part Fibre. Toxicol. 11: 33.
  • Sharp, J. L., Zammit, T. G., Azar, T. A., and Lawson, D. M. 2002. Stress-like response to common procedures in male rats housed alone or with other rats. Contemp. Top. Lab. Anim. Sci. 41: 8–14.
  • Stapleton, P. A., Minarchick, V. C., Yi, J., Engels, K., McBride, C. R., and Nurkiewicz, T. R. 2013. Maternal engineered nanomaterial exposure and fetal microvascular function: Does the Barker hypothesis apply? Am. J Obstet. Gynecol. 209: 227–311.
  • Stapleton, P. A., Nichols, C. E., Yi, J., McBride, C. R., Minarchick, V. C., Shepherd, D. L., Hollander, J. M., and Nurkiewicz, T. R. 2015. Microvascular and mitochondrial dysfunction in the female F1 generation after gestational TiO2 nanoparticle exposure. Nanotoxicology. 9: 941–951.
  • Stapleton, P. A., and Nurkiewicz, T. R. 2014. Maternal nanomaterial exposure: a double threat to maternal uterine health and fetal development? Nanomedicine (Lond.) 9: 929–931.
  • Weir, A., Westerhoff, P., Fabricius, L., Hristovski, K., and von Goetz, N. 2012. Titanium dioxide nanoparticles in food and personal care products. Environ. Sci. Technol. 46: 2242–2250.
  • Yi, J., Chen, B. T., Schwegler-Berry, D., Frazer, D., Castranova, V., McBride, C., Knuckles, T. L., Stapleton, P. A., Minarchick, V. C., and Nurkiewicz, T. R. 2013. Whole-body nanoparticle aerosol inhalation exposures. J. Vis. Exp. 75: e50263.
  • Yokota, S., Sato, A., Umezawa, M., Oshio, S., and Takeda, K. 2015. In utero exposure of mice to diesel exhaust particles affects spatial learning and memory with reduced N-methyl-d-aspartate receptor expression in the hippocampus of male offspring. Neurotoxicology 50: 108–115.
  • Yoshida, S., Hiyoshi, K., Oshio, S., Takano, H., Takeda, K., and Ichinose, T. 2010. Effects of fetal exposure to carbon nanoparticles on reproductive function in male offspring. Fertil. Steril. 93: 1695–1699.
  • Zhao, J., and Castranova, V. 2011. Toxicology of nanomaterials used in nanomedicine. J. Toxicol. Environ. Health B 14: 593–632.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.