331
Views
21
CrossRef citations to date
0
Altmetric
Original Articles

5-Aza-2′-deoxycytidine, a DNA methylation inhibitor, induces cytotoxicity, cell cycle dynamics and alters expression of DNA methyltransferase 1 and 3A in mouse hippocampus-derived neuronal HT22 cells

, , , , , , , , , , , , , , , , & show all

References

  • Bayraktar, G., and M. R. Kreutz. 2017. Neuronal DNA methyltransferases: Epigenetic mediators between synaptic activity and gene expression?. Neuroscientist 1073858417707457. doi:10.1177/1073858417707457
  • Cao, Q., X. Wang, L. Jia, A. K. Mondal, A. Diallo, G. A. Hawkins, S. K. Das, J. S. Parks, L. Yu, H. Shi, H. Shi, and B. Xue. 2014. Inhibiting DNA methylation by 5-Aza-2′-deoxycytidine ameliorates atherosclerosis through suppressing macrophage inflammation. Endocrinology 155:4925–4938. doi:10.1210/en.2014-1595.
  • Chen, C., Z. Ma, H. Zhang, X. Liu, and Z. Yu. 2017. Krüppel-like factor 4 enhances sensitivity of cisplatin to esophageal squamous cell carcinoma (ESCC) cells. Medical Science Monitor 23:3353–3359. doi:10.12659/MSM.902583.
  • Chestnut, B. A., Q. Chang, A. Price, C. Lesuisse, M. Wong, and L. J. Martin. 2011. Epigenetic regulation of motor neuron cell death through DNA methylation. Journal of Neuroscience 31:16619–16636. doi:10.1523/JNEUROSCI.1639-11.2011.
  • Christman, J. K. 2002. 5-Azacytidine and 5-aza-2odical''>uron cell death through DNA methylationuamMechanistic studies and their implications for cancer therapy. Oncogene 21:5483–5495. doi:10.1038/sj.onc.1205699.
  • Deng, T., and Y. Zhang. 2009. Possible involvement of activation of P53/P21 and demethylation of RUNX 3 in the cytotoxicity against Lovo cells induced by 5-Aza-2′-deoxycytidine. Life Sciences 84:311–320. doi:10.1016/j.lfs.2008.12.015.
  • Ding, X.-L., X. Yang, G. Liang, and K. Wang. 2016. Isoform switching and exon skipping induced by the DNA methylation inhibitor 5-Aza-2′-deoxycytidine. Scientific Reports 6:24545. doi:10.1038/srep24545.
  • Endres, M., A. Meisel, D. Biniszkiewicz, S. Namura, K. Prass, K. Ruscher, A. Lipski, R. Jaenisch, M. A. Moskowitz, and U. Dirnagl. 2000. DNA methyltransferase contributes to delayed ischemic brain injury. Journal of Neuroscience 20:3175–3181.
  • Fang, J. C., Z. L. Su, G. Qiu, D. He, Z. Y. Feng, M. F. Zhu, L. Li, and X. L. He. 2006. SHP-1 gene’s methylation status of Daudi lymphoma cell and the demethylation effect of 5-aza-2ʹ-deoxycytidine. Zhonghua Xue Ye Xue Za Zhi 27:670–674.
  • Gerasimaite, R., E. Merkiene, and S. Klimasauskas. 2011. Direct observation of cytosine flipping and covalent catalysis in a DNA methyltransferase. Nucleic Acids Research 39:3771–3780. doi:10.1093/nar/gkq1329.
  • Jacewicz, D., K. Siedlecka-Kroplewska, J. Drzezdzon, A. Piotrowska, D. Wyrzykowski, A. Tesmar, K. Zamojc, and L. Chmurzynski. 2017. Method for detection of hydrogen peroxide in HT22 cells. Scientific Reports 7:45673. doi:10.1038/srep45673.
  • Karpf, A. R., B. C. Moore, T. O. Ririe, and D. A. Jones. 2001. Activation of the p53 DNA damage response pathway after inhibition of DNA methyltransferase by 5-aza-2ʹ-deoxycytidine. Molecular Pharmacology 59:751–757.
  • Li, E., and Y. Zhang. 2014. DNA methylation in mammals. Cold Spring Harbor Perspectives in Biology 6:a019133. doi:10.1101/cshperspect.a019133.
  • Liu, J., Y. S. Xie, F. L. Wang, L. J. Zhang, Y. Zhang, and H. S. Luo. 2013. Cytotoxicity of 5-Aza-2ʹ-deoxycytidine against gastric cancer involves DNA damage in an ATM-P53 dependent signaling pathway and demethylation of P16(INK4A). Biomedicine & Pharmacotherapy 67:78–87. doi:10.1016/j.biopha.2012.10.015.
  • Liu, J., Y. Zhang, Y. S. Xie, F. L. Wang, L. J. Zhang, T. Deng, and H. S. Luo. 2012. 5-Aza-2′-deoxycytidine induces cytotoxicity in BGC-823 cells via DNA methyltransferase 1 and 3a independent of p53 status. Oncology Reports 28:545–552.
  • Pan, F. P., H. K. Zhou, H. Q. Bu, Z. Q. Chen, H. Zhang, L. P. Xu, J. Tang, Q. J. Yu, Y. Q. Chu, J. Pan, Y. Fei, S. Z. Lin, D. L. Liu, and L. Chen. 2016. Emodin enhances the demethylation by 5-Aza-CdR of pancreatic cancer cell tumor-suppressor genes P16, RASSF1A and ppENK. Oncology Reports 35:1941–1949.
  • Scott, H., A. E. Smith, G. R. Barker, J. B. Uney, and E. C. Warburton. 2017. Contrasting roles for DNA methyltransferases and histone deacetylases in single-item and associative recognition memory. Neuroepigenetics 9:1–9. doi:10.1016/j.nepig.2017.02.001.
  • Seo, J. Y., E. Pyo, J.-P. An, J. Kim, S. H. Sung, and W. K. Oh. 2017. Andrographolide activates Keap1/Nrf2/ARE/HO-1 pathway in HT22 cells and suppresses microglial activation by A β 42 through Nrf2-Related inflammatory response. Mediators of Inflammation 2017:1–12. doi:10.1155/2017/5906189.
  • Xiong, H., Z.-F. Chen, Q.-C. Liang, W. Du, H.-M. Chen, W.-Y. Su, G.-Q. Chen, Z.-G. Han, and J.-Y. Fang. 2009. Inhibition of DNA methyltransferase induces G2 cell cycle arrest and apoptosis in human colorectal cancer cells via inhibition of JAK2/STAT3/STAT5 signalling. Journal of Cellular and Molecular Medicine 13:3668–3679. doi:10.1111/j.1582-4934.2009.00661.x.
  • Yang, J., Z. Zhang, S. Jiang, M. Zhang, J. Lu, L. Huang, T. Zhang, K. Gong, S. Yan, Z. Yang, and G. Shao. 2016. Vanadate-induced antiproliferative and apoptotic response in esophageal squamous carcinoma cell line EC109. Journal of Toxicology and Environmental Health, Part A 79:864–868. doi:10.1080/15287394.2016.1193115.
  • Zhang, M., D.-S. Huo, Z.-P. Cai, G. Shao, H. Wang, Z.-Y. Zhao, and Z.-J. Yang. 2015. The effect of schizandrol A-induced DNA methylation on SH-SY5YAB 1-40 altered neuronal cell line: A potential use in Alzheimer’s disease. Journal of Toxicology and Environmental Health, Part A 78:1321–1327. doi:10.1080/15287394.2015.1085942.
  • Zhang, S., Y. Zhang, S. Jiang, Y. Liu, L. Huang, T. Zhang, G. Lu, K. Gong, X. Ji, and G. Shao. 2014. The effect of hypoxia preconditioning on DNA methyltransferase and PP1γ in hippocampus of hypoxia preconditioned mice. High Altitude Medicine & Biology 15:483–490. doi:10.1089/ham.2014.1042.
  • Zhang, Z., J. Yang, X. Liu, X. Jia, S. Xu, K. Gong, S. Yan, C. Zhang, and G. Shao. 2016. Effects of 5-Aza-2′-deoxycytidine on expression of PP1γ in learning and memory. Biomedicine & Pharmacotherapy 84:277–283. doi:10.1016/j.biopha.2016.09.024.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.