375
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Characterization of inter-tissue and inter-strain variability of TCE glutathione conjugation metabolites DCVG, DCVC, and NAcDCVC in the mouse

, , &
Pages 37-52 | Received 29 Aug 2017, Accepted 20 Nov 2017, Published online: 30 Nov 2017

References

  • Birner, G., U. Bernauer, M. Werner, and W. Dekant. 1997. Biotransformation, excretion and nephrotoxicity of haloalkene-derived cysteine S-conjugates. Arch. Toxicol 72:1–8.
  • Bloemen, L. J., A. C. Monster, S. Kezic, J. N. Commandeur, H. Veulemans, N. P. Vermeulen, and J. W. Wilmer. 2001. Study on the cytochrome P-450- and glutathione-dependent biotransformation of trichloroethylene in humans. Int. Arch. Occup. Environ. Health. 74:102–108.
  • Bradford, B. U., E. F. Lock, O. Kosyk, S. Kim, T. Uehara, D. Harbourt, M. DeSimone, D. W. Threadgill, V. Tryndyak, I. P. Pogribny, L. Bleyle, D. R. Koop, and I. Rusyn. 2011. Interstrain differences in the liver effects of trichloroethylene in a multistrain panel of inbred mice. Toxicol. Sci. 120:206–217.
  • Buben, J. A., and E. J. O’Flaherty. 1985. Delineation of the role of metabolism in the hepatotoxicity of trichloroethylene and perchloroethylene: A dose-effect study. Toxicol. Appl. Pharmacol. 78:105–122.
  • Chiu, W. A., J. C. Caldwell, N. Keshava, and C. S. Scott. 2006. Key scientific issues in the health risk assessment of trichloroethylene. Environ. Health Persp. 114:1445–1449.
  • Chiu, W. A., J. L. Campbell, H. J. Clewell, Y. H. Zhou, F. A. Wright, K. Z. Guyton, and I. Rusyn. 2014. Physiologically-based pharmacokinetic (PBPK) modeling of inter-strain variability in trichloroethylene metabolism in the mouse. Environ Health. Persp. 122:456–463.
  • Chiu, W. A., J. Jinot, C. S. Scott, S. L. Makris, G. S. Cooper, R. C. Dzubow, A. S. Bale, M. V. Evans, K. Z. Guyton, N. Keshava, J. C. Lipscomb, S. Barone, J. F. Fox, M. R. Gwinn, J. Schaum, and J. C. Caldwell. 2013. Human health effects of trichloroethylene: Key findings and scientific issues. Environ Health. Persp. 121:303–311.
  • Chiu, W. A., M. S. Okino, and M. V. Evans. 2009. Characterizing uncertainty and population variability in the toxicokinetics of trichloroethylene and metabolites in mice, rats, and humans using an updated database, physiologically based pharmacokinetic (PBPK) model, and Bayesian approach. Toxicol Appl. Pharmacol 241:36–60.
  • Chiu, W. A., and W. Slob. 2015. A unified probabilistic framework for dose-response assessment of human health effects. Environ. Health Persp. 123:1241–1254.
  • Cichocki, J. A., K. Z. Guyton, N. Guha, W. A. Chiu, I. Rusyn, and L. H. Lash. 2016. Target organ metabolism, toxicity, and mechanisms of trichloroethylene and perchloroethylene: Key similarities, differences, and data gaps. J. Pharmacol. Exp. Ther. 359:110–123.
  • Corton, J. C., M. L. Cunningham, B. T. Hummer, C. Lau, B. Meek, J. M. Peters, J. A. Popp, L. Rhomberg, J. Seed, and J. E. Klaunig. 2014. Mode of action framework analysis for receptor-mediated toxicity: The peroxisome proliferator-activated receptor alpha (PPARalpha) as a case study. Crit. Rev. Toxicol. 44:1–49.
  • Dekant, W. 2003. Biosynthesis of toxic glutathione conjugates from halogenated alkenes. Toxicol Lett. 144:49–54.
  • Epa, U. S. 2000. Guidance for data quality assessment: Practical methods for data analysis. United States Environmental Protection Agency: Washington, DC. https://www.epa.gov/sites/production/files/2015-06/documents/g9-final.pdf
  • Epa, U. S. 2011b. Toxicological review of trichloroethylene (CAS No. 79-01-6): In support of summary information on the integrated risk information system (IRIS).
  • Green, T., J. Dow, M. K. Ellis, J. R. Foster, and J. Odum. 1997. The role of glutathione conjugation in the development of kidney tumours in rats exposed to trichloroethylene. Chem. Biol. Interact. 105:99–117.
  • Guha, N., D. Loomis, Y. Grosse, B. Lauby-Secretan, F. E. Ghissassi, V. Bouvard, L. Benbrahim-Tallaa, R. Baan, H. Mattock, and K. Straif; International Agency for Research on Cancer Monograph Working Group. 2012. Carcinogenicity of trichloroethylene, tetrachloroethylene, some other chlorinated solvents, and their metabolites. Lancet Oncol. 13:1192–1193.
  • Gul Altuntas, T., and E. D. Kharasch. 2002. Biotransformation of L-cysteine S-conjugates and N-acetyl-L-cysteine S-conjugates of the sevoflurane degradation product fluoromethyl-2,2-difluoro-1-(trifluoromethyl)vinyl ether (compound A) in human kidney in vitro: Interindividual variability in N-acetylation, N-deacetylation, and beta-lyase-catalyzed metabolism. Drug Metab. Dispos. 30:148–154.
  • Helander, A., E. Vabo, K. Levin, and S. Borg. 1998. Intra- and interindividual variability of carbohydrate-deficient transferrin, gamma-glutamyltransferase, and mean corpuscular volume in teetotalers. Clin. Chem. 44:2120–2125.
  • Hinchman, C. A., and N. Ballatori. 1994. Glutathione conjugation and conversion to mercapturic acids can occur as an intrahepatic process. J. Toxicol. Environ. Health A 41:387–409.
  • IARC. 2014. IARC Monographs on the evaluation of carcinogenic risks to humans (Vol. 106): Trichloroethylene, tetrachloroethylene and some other chlorinated agents. 106.
  • Inoue, M., K. Okajima, and Y. Morino. 1984. Hepato-renal cooperation in biotransformation, membrane transport, and elimination of cysteine S-conjugates of xenobiotics. J. Biochem. 95:247–254.
  • Inoue, M., K. Okajima, S. Nagase, and Y. Morino. 1987. Inter-organ metabolism and transport of a cysteine-S-conjugate of xenobiotics in normal and mutant analbuminemic rats. Biochem. Pharmacol. 36:2145–2150.
  • Irving, R. M., and A. A. Elfarra. 2013. Mutagenicity of the cysteine S-conjugate sulfoxides of trichloroethylene and tetrachloroethylene in the Ames test. Toxicology 306C:157–161.
  • Irving, R. M., M. E. Pinkerton, and A. A. Elfarra. 2013. Characterization of the chemical reactivity and nephrotoxicity of N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine sulfoxide, a potential reactive metabolite of trichloroethylene. Toxicol. Appl. Pharmacol. 267:1–10.
  • Kim, S., L. B. Collins, G. Boysen, J. A. Swenberg, A. Gold, L. M. Ball, B. U. Bradford, and I. Rusyn. 2009a. Liquid chromatography electrospray ionization tandem mass spectrometry analysis method for simultaneous detection of trichloroacetic acid, dichloroacetic acid, S-(1,2-dichlorovinyl)glutathione and S-(1,2-dichlorovinyl)-L-cysteine. Toxicology 262:230–238.
  • Kim, S., D. Kim, G. M. Pollack, L. B. Collins, and I. Rusyn. 2009b. Pharmacokinetic analysis of trichloroethylene metabolism in male B6C3F1 mice: Formation and disposition of trichloroacetic acid, dichloroacetic acid, S-(1,2-dichlorovinyl)glutathione and S-(1,2-dichlorovinyl)-L-cysteine. Toxicol. Appl. Pharmacol. 238:90–99.
  • Krzysik, B. A., and S. A. Adibi. 1977. Cytoplasmic dipeptidase activities of kidney, ileum, jejunum, liver, muscle, and blood. Am. J. Physiol. 233:E450–E456.
  • Lamba, J. K., Y. S. Lin, E. G. Schuetz, and K. E. Thummel. 2002. Genetic contribution to variable human CYP3A-mediated metabolism. Adv. Drug. Deliv. Rev. 54:1271–1294.
  • Lash, L. H., W. A. Chiu, K. Z. Guyton, and I. Rusyn. 2014. Trichloroethylene biotransformation and its role in mutagenicity, carcinogenicity and target organ toxicity. Mutat. Res. Rev. Mutat. Res. 762:22–36.
  • Lash, L. H., J. W. Fisher, J. C. Lipscomb, and J. C. Parker. 2000. Metabolism of trichloroethylene. Environ. Health Persp. 108 (Suppl 2):177–200.
  • Lash, L. H., S. E. Hueni, and D. A. Putt. 2001a. Apoptosis, necrosis, and cell proliferation induced by S-(1,2-dichlorovinyl)-L-cysteine in primary cultures of human proximal tubular cells. Toxicol Appl. Pharmacol. 177:1–16.
  • Lash, L. H., D. A. Putt, W. T. Brashear, R. Abbas, J. C. Parker, and J. W. Fisher. 1999. Identification of S-(1,2-dichlorovinyl)glutathione in the blood of human volunteers exposed to trichloroethylene. J. Toxicol. Environ. Health. A. 56:1–21.
  • Lash, L. H., D. A. Putt, P. Huang, S. E. Hueni, and J. C. Parker. 2007. Modulation of hepatic and renal metabolism and toxicity of trichloroethylene and perchloroethylene by alterations in status of cytochrome P450 and glutathione. Toxicology 235:11–26.
  • Lash, L. H., D. A. Putt, and J. C. Parker. 2006. Metabolism and tissue distribution of orally administered trichloroethylene in male and female rats: Identification of glutathione- and cytochrome P-450-derived metabolites in liver, kidney, blood, and urine. J. Toxicol. Environ. Health. A. 69:1285–1309.
  • Lash, L. H., W. Qian, D. A. Putt, K. Desai, A. A. Elfarra, A. R. Sicuri, and J. C. Parker. 1998. Glutathione conjugation of perchloroethylene in rats and mice in vitro: Sex-, species-, and tissue-dependent differences. Toxicol. Appl. Pharmacol. 150:49–57.
  • Lash, L. H., W. Qian, D. A. Putt, S. E. Hueni, A. A. Elfarra, R. J. Krause, and J. C. Parker. 2001b. Renal and hepatic toxicity of trichloroethylene and its glutathione-derived metabolites in rats and mice: Sex-, species-, and tissue-dependent differences. J. Pharmacol. Exp. Ther. 297:155–164.
  • Lash, L. H., P. J. Sausen, R. J. Duescher, A. J. Cooley, and A. A. Elfarra. 1994. Roles of cysteine conjugate beta-lyase and S-oxidase in nephrotoxicity: Studies with S-(1,2-dichlorovinyl)-L-cysteine and S-(1,2-dichlorovinyl)-L-cysteine sulfoxide. J. Pharmacol. Exp. Ther. 269:374–383.
  • Lee, K. M., J. V. Bruckner, S. Muralidhara, and J. M. Gallo. 1996. Characterization of presystemic elimination of trichloroethylene and its nonlinear kinetics in rats. Toxicol Appl. Pharmacol. 139:262–271.
  • Lee, K. M., S. Muralidhara, C. A. White, and J. V. Bruckner. 2000. Mechanisms of the dose-dependent kinetics of trichloroethylene: Oral bolus dosing of rats. Toxicol Appl. Pharmacol. 164:55–64.
  • Luo, Y. S., J. A. Cichocki, T. J. McDonald, and I. Rusyn. 2017. Simultaneous detection of the tetrachloroethylene metabolites S-(1,2,2-trichlorovinyl) glutathione, S-(1,2,2-trichlorovinyl)-L-cysteine, and N-acetyl-S-(1,2,2-trichlorovinyl)-L-cysteine in multiple mouse tissues via ultra-high performance liquid chromatography electrospray ionization tandem mass spectrometry. J. Toxicol. Environ Health A. 80:513–524.
  • Matuszewski, B. K., M. L. Constanzer, and C. M. Chavez-Eng. 2003. Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS. Anal. Chem. 75:3019–3030.
  • Mccarthy, R. I., E. A. Lock, and G. M. Hawksworth. 1994. Cytosolic C-S lyase activity in human kidney samples - Relevance for the nephrotoxicity of halogenated alkenes in man. Toxicol. Ind. Health. 10:103–112.
  • Moore, L. E., P. Boffetta, S. Karami, P. Brennan, P. S. Stewart, R. Hung, D. Zaridze, V. Matveev, V. Janout, H. Kollarova, V. Bencko, M. Navratilova, N. Szeszenia-Dabrowska, D. Mates, J. Gromiec, I. Holcatova, M. Merino, S. Chanock, W. H. Chow, and N. Rothman. 2010. Occupational trichloroethylene exposure and renal carcinoma risk: Evidence of genetic susceptibility by reductive metabolism gene variants. Cancer. Res. 70:6527–6536.
  • Moron, M. S., J. W. Depierre, and B. Mannervik. 1979. Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim. Biophys Acta. 582:67–78.
  • Program, N. T. 1990. Carcinogenesis studies of trichloroethylene (Without epichlorohydrin) (CAS No. 79-01-6) in F344/N Rats and B6C3F1 Mice (Gavage studies). Natl. Toxicol. Program Tech. Rep. Ser. 243:1–174.
  • Rusyn, I., W. A. Chiu, L. H. Lash, H. Kromhout, J. Hansen, and K. Z. Guyton. 2014. Trichloroethylene: Mechanistic, epidemiologic and other supporting evidence of carcinogenic hazard. Pharmacol. Therap. 141:55–68.
  • Sausen, P. J., and A. A. Elfarra. 1990. Cysteine conjugate S-oxidase. Characterization of a novel enzymatic activity in rat hepatic and renal microsomes. J. Biol. Chem. 265:6139–6145.
  • Slone, D. H., E. P. Gallagher, H. S. Ramsdell, A. E. Rettie, P. L. Stapleton, L. G. Berlad, and D. L. Eaton. 1995. Human variability in hepatic glutathione S-transferase-mediated conjugation of aflatoxin B1-epoxide and other substrates. Pharmacogenetics 5:224–233.
  • Spearow, J. L., K. Gettmann, and M. Wade. 2017. Review: Risk assessment implications of variation in susceptibility to perchloroethylene due to genetic diversity, ethnicity, age, gender, diet and pharmaceuticals. Human Ecol. Risk. Assess. 23:1466–1492.
  • Stormer, E., I. Roots, and J. Brockmoller. 2000. Benzydamine N-oxidation as an index reaction reflecting FMO activity in human liver microsomes and impact of FMO3 polymorphisms on enzyme activity. Br. J. Clin. Pharmacol. 50:553–561.
  • Threadgill, D. W., and G. A. Churchill. 2012. Ten years of the Collaborative Cross. Genetics 190:291–294.
  • U.S. EPA. 2011a. Toxicological review of dichloromethane (Methylene chloride) (CAS No. 75-09-2): In support of summary information on the integrated risk information system (IRIS).
  • U.S. EPA. EPA Names first chemicals for review under new TSCA legislation 2017 [ cited May 19, 2017. Available from https://www.epa.gov/newsreleases/epa-names-first-chemicals-review-under-new-tsca-legislation.
  • Werner, M., G. Birner, and W. Dekant. 1996. Sulfoxidation of mercapturic acids derived from tri- and tetrachloroethene by cytochromes P450 3A: A bioactivation reaction in addition to deacetylation and cysteine conjugate beta-lyase mediated cleavage. Chem. Res. Toxicol. 9:41–49.
  • Whitfield, J. B. 2001. Gamma glutamyl transferase. Crit. Rev. Clin. Lab. Sci. 38:263–355.
  • WHO/IPCS. 2005. Chemical-specific adjustment factors for interspecies differences in human variability: Guidance document for use of data in dose/concentration-response assessment. Switzerland: Geneva.
  • Yoo, H. S., B. U. Bradford, O. Kosyk, S. Shymonyak, T. Uehara, L. B. Collins, W. M. Bodnar, L. M. Ball, A. Gold, and I. Rusyn. 2015a. Comparative analysis of the relationship between trichloroethylene metabolism and tissue-specific toxicity among inbred mouse strains: Liver effects. J. Toxicol. Environ. Health. A. 78:15–31.
  • Yoo, H. S., B. U. Bradford, O. Kosyk, T. Uehara, S. Shymonyak, L. B. Collins, W. M. Bodnar, L. M. Ball, A. Gold, and I. Rusyn. 2015b. Comparative analysis of the relationship between trichloroethylene metabolism and tissue-specific toxicity among inbred mouse strains: Kidney effects. J. Toxicol. Environ. Health. A. 78:32–49.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.