373
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Relating soil geochemical properties to arsenic bioaccessibility through hierarchical modeling

, , , , , ORCID Icon, , , & show all
Pages 160-172 | Received 14 Aug 2017, Accepted 20 Dec 2017, Published online: 16 Jan 2018

References

  • Agency for Toxic Substances and Disease Registry (ATSDR). 2012. Toxicological profile for vandium. Atlanta, GA. https://www.atsdr.cdc.gov/toxprofiles/tp58.pdf.
  • Akins, M. B., and R. J. Lewis. 1976. Chemical distribution and gaseous evolution of arsenic-74 added to soils as DSMA74-As. Soil Science Society of America Journal 40:655–658. doi:10.2136/sssaj1976.03615995004000050018x.
  • Alloway, B. J., Ed. 1990. Heavy Metals in Soils. Glasgow, Scotland: Blackie and Son Ltd.
  • Appleton, J. D., M. R. Cave, and J. Wragg. 2012. Anthropogenic and geogenic impacts on arsenic bioaccessibility in UK topsoils. Sci. Total Environ 435−436:21−29.
  • ATSDR. 2017. The ATSDR 2017 Substance priority list. Atlanta, GA. Accessed November 2, 2017. https:// www.atsdr.cdc.gov/spl/.
  • Barton, K. 2016. MuMIn: Multi-model inference. R package version 1.15.6. https://cran.r-project.org/package=MuMIn
  • Bates, D. M., M. Maechler, B. Bolker, and S. Walker. 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67:1–48. doi:10.18637/jss.v067.i01.
  • Blume, L. J., B. A. Schumacher, P. W. Schaffer, L. A. Cappo, M. L. Papp, R. D. Van Remortel, D. S. Coffey, M. G. Johnson, and D. J. Chaloud. 1991. Handbook of Methods for Acid Deposition Studies, Laboratory Analyses for Soil Chemistry. EPA/600/S4-90/023; U.S. Las Vegas, NV: Environmental Protection Agency.
  • Box, G. E. P., and D. R. Cox. 1964. An analysis of transformations. Ournal of the Royal Statistical Society, Series B (Statistical Methodology) 26:211–252.
  • Bradham, K. D., G. L. Diamond, M. Burgess, J. M. Albert Juhasz, J. M. Klotzbach, M. Maddaloni, C. Nelson, K. Scheckel, S. M. Serda, M. Stifelman, J. David, and D. J. Thomas. 2018. In vivo and in vitro methods for evaluating soil arsenic bioavailability: Relevant to human health risk assessment. Journal of Toxicogicology and Environmental Health Part B:21. In press.
  • Bradham, K. D., G. L. Diamond, K. G. Scheckel, M. F. Hughes, S. W. Casteel, B. W. Miller, J. M. Klotzbach, W. C. Thayer, and D. J. Thomas. 2013. Mouse assay for determination of arsenic bioavailability in contaminated soils. Journal of Toxicology and Environmental Health, Part A 76:815–826. doi:10.1080/15287394.2013.821395.
  • Bradham, K. D., C. Nelson, A. L. Juhasz, E. Smith, K. Scheckel, D. R. Obenour, B. W. Miller, and D. J. Thomas. 2015. Independent data validation of an in vitro method for the prediction of the relative bioavailability of arsenic in contaminated soils. Environmental Science & Technology 49:6312−6318. doi:10.1021/acs.est.5b00905.
  • Bradham, K. D., K. G. Scheckel, C. M. Nelson, P. E. Seales, G. E. Lee, M. F. Hughes, B. W. Miller, A. Yeow, T. Gilmore, S. M. Serda, S. Harper, and D. J. Thomas. 2011. Relative bioavailability and bioaccessibility and speciation of arsenic in contaminated soils. Environmental Health Perspectives 119:1629–1634. doi:10.1289/ehp.1003352.
  • Brattin, W., J. Drexler, Y. Lowney, S. Griffin, G. Diamond, and L. Woodbury. 2013. An in vitro method for estimation of arsenic relative bioavailability in soil. Journal of Toxicology and Environmental Health Part A 76:458−478.
  • Burns, R. G. 1976. The uptake of cobalt into ferromanganese nodules, soils, and synthetic manganese (IV) oxides. Geochimica Et Cosmochimica Acta 40:95–102. doi:10.1016/0016-7037(76)90197-6.
  • Cave, M. R., J. Wragg, and H. Harrison. 2013. Measurement modelling and mapping of arsenic bioaccessibility in Northampton, United Kingdom. Journal of Environmental Science and Health, Part A 48:629–640. doi:10.1080/10934529.2013.731808.
  • Das, S., J. S. Jean, and S. Kar. 2013. Bioaccessibility and health risk assessment of arsenic-enriched soils, Central India. Ecotoxicology and Environmental Safety 92:252–257. doi:10.1016/j.ecoenv.2013.02.016.
  • Diamond, G. L., K. D. Bradham, W. J. Brattin, M. Burgess, S. Griffin, C. A. Hawkins, A. L. Juhasz, J. M. Klotzbach, C. Nelson, Y. W. Lowney, K. G. Scheckel, and D. J. Thomas. 2016. Predicting oral relative bioavailability of arsenic in soil from in vitro bioaccessibility. Journal of Toxicology and Environmental Health, Part A 79:165−173. doi:10.1080/15287394.2015.1134038.
  • Dudka, S., and W. P. Miller. 1999. Permissible concentrations of arsenic and lead in soils based on risk assessment. Water, Air, and Soil Pollution 113:127−132. doi:10.1023/A:1005028905396.
  • Faraway, J. J. 2014. Linear Models with R, 2nd ed. Boca Raton, FL: CRC Press.
  • Gelman, A., J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B. Rubin. 2014. Bayesian data analysis. (Vol. 2). Boca Raton, FL: CRC Press.
  • Gelman, A., and J. Hill. 2007. Data Analysis Using Regression and Multilevel/Hierarchical Models. New York, NY: Cambridge University Press.
  • Girouard, E., and G. J. Zagury. 2009. Arsenic bioaccessibility in CCA-contaminated soils: Influence of soil properties, arsenic fractionation, and particle-size fraction. Science of the Total Environment 407:2576–2585. doi:10.1016/j.scitotenv.2008.12.019.
  • Goldberg, S. 2002. Competitive adsorption of arsenate and arsenite on oxides and clay minerals. Soil Science Society of America Journal 66:413–421. doi:10.2136/sssaj2002.4130.
  • Johnson, J. B., and K. S. Omland. 2004. Model selection in ecology and evolution. Trends in Ecology & Evolution 19:101–108. doi:10.1016/j.tree.2003.10.013.
  • Juhasz, A. L., E. Smith, J. Weber, M. Rees, A. Rofe, T. Kuchel, L. Sansom, and R. Naidu. 2007. Comparison of in vivo and in vitro methodologies for the assessment of arsenic bioavailability in contaminated soils. Chemosphere 69:961–966. doi:10.1016/j.chemosphere.2007.05.018.
  • Kohavi, R. 1995. A study of cross-validation and bootstrap for accuracy estimation and model selection. In Proceedings of the 14th international joint conference on artificial intelligence, Vol. 2, 1137–1143.San Francisco, CA: Morgan Kaufmann Publishers Inc.
  • Kutner, M. H., C. J. Nachtsheim, J. Neter, and W. Li. 2005. Applied Linear Statistical Models, 5th ed. New York, NY: McGraw-Hill/Irwin.
  • Kuznetsova, A., P. B. Brockhoff, and R. H. B. Christensen 2016. lmerTest: Tests in Linear Mixed Effects Models. R package version 2.0-33. https://CRAN.R-project.org/package=lmerTest
  • Legates, D., and G. McCabe, Jr. 1999. Evaluating the use of “goodness of fit” measures in hydrologic and hydroclimatic model validation. Water Resources Research 35:233–241. doi:10.1029/1998WR900018.
  • McLaren, R. G., D. M. Lawson, and R. S. Swift. 1986. Sorption and desorption of cobalt by soils and soil components. Journal of Soil Sciences 37:413–426. doi:10.1111/j.1365-2389.1986.tb00374.x.
  • Mikutta, C., P. N. Mandaliev, N. Mahler, T. Kotsev, and R. Kretzschmar. 2014. Bioaccessibility of arsenic in mining-impacted circumneutral river floodplain soils. Environmental Science & Technology 48:13468−13477. doi:10.1021/es502635t.
  • Mingot, J., E. De Miguel, and E. Chacón. 2011. Assessment of oral bioaccessibility of arsenic in playground soil in Madrid (Spain): A three-method comparison and implications for risk assessment. Chemosphere 84:1386–1391. doi:10.1016/j.chemosphere.2011.05.001.
  • Nakagawa, S., and H. Schielzeth. 2013. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods in Ecology and Evolution 4:133–142. doi:10.1111/mee3.2013.4.issue-2.
  • Oomen, A. G., A. Hack, M. Minekus, E. Zeijdner, C. Cornelis, G. Schoeters, W. Verstraete, T. Van De Wiele, J. Wragg, C. J. M. Rompelberg, A. J. A. M. Sips, and J. H. Van Wijnen. 2002. Comparison of five in vitro digestion models to study the bioaccessibility of soil contaminants. Environmental Science & Technology 36:3326–3334. doi:10.1021/es010204v.
  • Qian, S. S., T. F. Cuffney, I. Alameddine, G. McMahon, and K. H. Reckhow. 2010. On the application of multilevel modeling in environmental and ecological studies. Ecology 91:355–361. doi:10.1890/09-1043.1.
  • R Core Team. 2016. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.
  • Rayment, G. E., and F. R. Higginson. 1992. Australian Laboratory Handbook of Soil and Water Chemical Methods, vol. 3. Melbourne, Australia: Inkata Press.
  • Samuels, M. L. 1993. Simpson’s paradox and related phenomena. Journa of L American Statistical Association 88:81–88.
  • Schwarz, G. 1978. Estimating the dimension of a model. The Annals of Statistics 6:461–464. doi:10.1214/aos/1176344136.
  • Smith, E., R. Naidu, and A. M. Alston. 1999. Chemistry of arsenic in soils: I. sorption of arsenate and arsenite by four Australian soils. Journal of Environment Quality 28:1719–1726. doi:10.2134/jeq1999.00472425002800060005x.
  • U.S. Environmental Protection Agency (U.S. EPA). 2007. Guidance for evaluating the oral bioavailability of metals in soils for use in human health risk assessment. Washington, DC: Office of Solid Waste and Emergency Response. OSWER 9285. 7-80.
  • U.S. EPA. 2012. Standard Operating Procedure for an In Vitro Bioaccessibility Assay for Lead in Soil. Washington, DC: Office of Solid Waste and Emergency Response. OSWER 9200. 2-86.
  • Yang, J.-K., M. O. Barnett, P. M. Jardine, N. T. Basta, and S. W. Casteel. 2002. Adsorption, Sequestration, and Bioaccessibility of As(V) in Soils. Environmental Science & Technology 36:4562–4569. doi:10.1021/es011507s.
  • Yang, J.-K., M. O. Barnett, J. Zhuang, S. E. Fendorf, and P. M. Jardine. 2005. Adsorption, Oxidation, and Bioaccessibility of As(III) in Soils. Environmental Science & Technology 39:7102–7110. doi:10.1021/es0481474.
  • Yang, K. H., S. Jeong, E. H. Jho, and K. Nam. 2016. Effect of biogeochemical interactions on bioaccessibility of arsenic in soils of a former smelter site in Republic of Korea. Environ. Geochem. Health 38:1347. doi:10.1007/s10653-016-9800-x.
  • Yolcubal, I., and N. H. Akyol. 2008. Adsorption and transport of arsenate in carbonate-rich soils: Coupled effects of nonlinear and rate-limited sorption. Chemosphere 73:1300–1307. doi:10.1016/j.chemosphere.2008.07.013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.