581
Views
22
CrossRef citations to date
0
Altmetric
Articles

Toxicity assessment of cobalt ferrite nanoparticles on wheat plants

, , , ORCID Icon, , , & show all
Pages 604-619 | Received 11 Jan 2018, Accepted 21 Apr 2018, Published online: 08 May 2018

References

  • Aebi, H. 1984. Catalase in vitro. Meth Enzymol 105:121–26.
  • Alves., J. M., L. F. Leandro, J. M. Senedese, P. T. Castro, D. M. Pereira, F. A. Resende, D. L. Campos, J. J. Mangabeira da silva, E. A. Varanda, J. K. Bastos, S. R. Ambrosio, and D. C. Tavares. 2018. Antigenotoxicity properties of Copaifera multijuga oleoresin and its chemical marker, the diterpene(-)copalic acid. Journal of Toxicology and Environmental Health. Part A 81:116–29. doi:10.1080/15287394.2017.1420505.
  • Amiri, S., and H. Shokrollahi. 2013. The role of cobalt ferrite magnetic nanoparticles in medical science. Materials Sciences Engineering C 33:1–8. doi:10.1016/j.msec.2012.09.003.
  • Barrena, R., E. Casals, J. Colón, X. Font, A. Sánchez, and V. Puntes. 2009. Evaluation of the ecotoxicity of model nanoparticles. Chemosphere 75:850–57. doi:10.1016/j.chemosphere.2009.01.078.
  • Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein dye binding. Analytical Biochemistry 72:248–54. doi:10.1016/0003-2697(76)90527-3.
  • Bunderson-Schelvan, M., A. Holian, and R. F. Hamilton. 2017. Engineered nanomaterial-induced lysosomal membrane permeabilization and anticathepsin agents. JToxicol Environment Health B 20:230–48. doi:10.1080/10937404.2017.1305924.
  • Chaoui, A., S. Mazhoudi, M. H. Ghorbal, and E. El Ferjani. 1997. Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.). Plant Science : an International Journal of Experimental Plant Biology 127:139–47. doi:10.1016/S0168-9452(97)00115-5.
  • Chattopadhyay, S., S. K. Dash, S. Tripathy, B. Das, D. Mandal, P. Pramanik, and S. Roy. 2015. Toxicity of cobalt oxide nanoparticles to normal cells: An in vitro and in vivo study. Chemico-Biological Interactions 226:58–71. doi:10.1016/j.cbi.2014.11.016.
  • Dazy, M., E. Béraud, S. Cotelle, E. Meux, J. F. Masfaraud, and J. F. Férard. 2008. Antioxidant enzyme activities as affected by trivalent and hexavalent chromium species in Fontinalis antipyretica Hedw. Chemosphere 73:281–90. doi:10.1016/j.chemosphere.2008.06.044.
  • de la Rosa, G., C. García-Castañeda, E. Vázquez-Núñez, Á. J. Alonso-Castro, G. Basurto-Islas, Á. Mendoza, G. Cruz-Jiménez, and C. Molina. 2017. Physiological and biochemical response of plants to engineered NMs: Implications on future design. Plant Physiology and Biochemistry : PPB / Societe Francaise De Physiologie Vegetale 110:226–35. doi:10.1016/j.plaphy.2016.06.014.
  • Du, W., W. Tan, J. R. Peralta-Videa, J. L. Gardea-Torresdey, R. Ji, Y. Yin, and H. Guo. 2017. Interaction of metal oxide nanoparticles with higher terrestrial plants: Physiological and biochemical aspects. Plant Physiology and Biochemistry : PPB / Societe Francaise De Physiologie Vegetale 110:210–25. doi:10.1016/j.plaphy.2016.04.024.
  • Engler-Chiurazzi, E. B., A. P. Stapleton, J. J. Stalnaker, X. Ren, H. Hu, R. T. Nurkiewicz, R. C. McBride, J. Yi, K. Engels, and W. J. Simpkins. 2016. Impacts of prenatal nanomaterial exposure on male adult Sprague Dawley rat behavior and cognition. Journal Toxicogical Environment Health A 79:447–52. doi:10.1080/15287394.2016.1164101.
  • USEPA. 1996. Ecological effects test guidelines OPPTS 850.4200 Seed germination/root elongation toxicity. Prevention, Pesticides and Toxic Substances (7101). EPA 712–C–96–154. gopher.epa.gov.
  • Fagundes, G. E., A. P. Damiani, G. D. Borges, K. A. Teixeira, M. M. Jesus, F. Daumann, F. Ramlov, T. Carvalho, D., . D. Leffa, P. Rohr, and V. M. de Andrade. 2017. Effect of green juice and their bioactive compounds on genotoxicity induced by alkylating agents in mice. Journal Toxicogical Environment Health A 80:756–66. doi:10.1080/15287394.2017.1357307.
  • Funari, V., L. Mantovani, L. Vigliotti, M. Tribaudino, E. Dinelli, and R. Braga. 2018. Superparamagnetic iron oxides nanoparticles from municipal solid waste incinerators. The Science of the Total Environment 621:687–96. doi:10.1016/j.scitotenv.2017.11.289.
  • Garća-Limones, C., A. Hervás, J. Navas-Cortés, R. M. Jiménez-Dı́az, and M. Tena. 2002. Induction of an antioxidant enzyme system and other oxidative stress markers associated with compatible and incompatible interactions between chickpea (Cicer arietinum L.) and Fusarium oxysporum f. sp.ciceris. Physiological Molecular Plant Pathologists 61:325–37. doi:10.1006/pmpp.2003.0445.
  • Gómez-Pastora, J., E. Bringas, and I. Ortiz. 2014. Recent progress and future challenges on the use of high performance magnetic nano-adsorbents in environmental applications. Chemical Engineering Journal 256:187–204. doi:10.1016/j.cej.2014.06.119.
  • Gullett, N. P., A. R. Ruhul Amin, S. Bayraktar, J. M. Pezzuto, D. M. Shin, F. R. Khuri, B. B. Aggarwal, Y. J. Surh, and O. Kucuk. 2010. Cancer prevention with natural compounds. Seminars in Oncology 37:258–81. doi:10.1053/j.seminoncol.2010.06.014.
  • Gupta, A. K., and S. Sinha. 2009. Antioxidant response in sesame plants grown on industrially contaminated soil: Effect on oil yield and tolerance to lipid peroxidation. Bioresource Technology 100:179–85. doi:10.1016/j.biortech.2008.05.013.
  • Hamilton, M. A., R. C. Russo, and R. V. Thurston. 1977. Trimmed Spearman-Karber method for estimating median lethal concentrations in toxicity bioassays. Environmental Science & Technology 11:714–19. doi:10.1021/es60130a004.
  • Hossain, Z., G. Mustafa, K. Sakata, and S. Komatsu. 2016. Insights into the proteomic response of soybean towards Al2O3, ZnO, and Ag nanoparticles stress. Journal HazardMater 304:291–305. doi:10.1016/j.jhazmat.2015.10.071.
  • Ju-Nam, Y., and J. R. Lead. 2008. Manufactured nanoparticles: An overview of their chemistry, interactions and potential environmental implications. The Science of the Total Environment 400:396–414. doi:10.1016/j.scitotenv.2008.06.042.
  • Khan, M. N., M. Mobin, Z. K. Abbas, K. A. AlMutairi, and Z. H. Siddiqui. 2017. Role of nanomaterials in plants under challenging environments. Plant Physiology and Biochemistry : PPB / Societe Francaise De Physiologie Vegetale 110:194–209. doi:10.1016/j.plaphy.2016.05.038.
  • Kharisov, I. V., R. Dias, V. O. Kharissova, V. M. Jiménez-Pérez, P. V. Olvera, and F. B. Muñoz. 2012. Iron-containing nanomaterials: Synthesis, properties, and environmental applications. Roy Social Chemical Advancement 2:9325–58. doi:10.1039/c2ra20812a.
  • Lee, C. W., S. Mahendra, K. Zodrow, D. Li, Y. C. Tsai, J. Braam, and P. J. J. Alvarez. 2010. Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environmental Toxicogical Chemical 29:669–75. doi:10.1002/etc.58.
  • Lichtenthaler, H. K. 1987. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Meth Enzymol 148:350–82.
  • Liu, D., J. Zou, M. Wang, and W. Jiang. 2008. Hexavalent chromium uptake and its effects on mineral uptake, antioxidant defence system and photosynthesis in Amaranthus viridis L. Bioresource Technology 99:2628–36. doi:10.1016/j.biortech.2007.04.045.
  • Liu, R., and R. Dal. 2015. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sciences Total Environment 514:131–39. doi:10.1016/j.scitotenv.2015.01.104.
  • López-Luna, J., M. C. González-Chávez, F. J. Esparza-García, and R. Rodríguez-Vázquez. 2012. Fractionation and availability of heavy metals in tannery sludge-amended soil and toxicity assessment on the fully-Grown Phaseolus vulgaris cultivars. Journal Environment Sciences Health Particle A: Toxic/Hazard Substances Environment Engineering 47:405–19. doi:10.1080/10934529.2012.646121.
  • López-Luna, J., M. J. Silva-Silva, S. Martinez-Vargas, O. F. Mijangos-Ricardez, M. C. González-Chávez, F. A. Solís-Domínguez, and M. C. Cuevas-Díaz. 2016. Magnetite nanoparticle (NP) uptake by wheat plants and its effect on cadmium and chromium toxicological behavior. The Science of the Total Environment 565:941–50. doi:10.1016/j.scitotenv.2016.01.029.
  • López-Moreno, M. L., L. Lugo, N. Guzmán, B. Álamo, O. Perales, Y. Cedeno-Mattei, and F. Román. 2016. Effect of cobalt ferrite (CoFe2O4) nanoparticles on the growth and development of Lycopersicon lycopersicum (tomato plants). The Science of the Total Environment 550:45–52. doi:10.1016/j.scitotenv.2016.01.063.
  • Luo, P., A. Roca, K. Tiede, K. Privett, J. Jiang, J. Pinkstone, G. Ma, J. Veinot., and A. Boxall. 2017. Application of nanoparticle tracking analysis for characterising the fate of engineered nanoparticles in sediment-water systems. Journal Environment Sciences (China) 64:62–71. doi:10.1016/j.jes.2016.07.019.
  • Ma, C., J. C. White, O. P. Dhankher, and B. Xing. 2015. Metal-based nanotoxicity and detoxification pathways in higher plants. Environmental Science & Technology 49:7109–22. doi:10.1021/acs.est.5b00685.
  • Maher, A. B., A. M. I. Ahmed, V. Karloukovski, A. D. MacLaren, G. P. Foulds, D. Allsop, M. A. D. Mann, R. Torres-Jardón, and L. Calderon-Garciduenas. 2016. Magnetite pollution nanoparticles in the human brain. Proceedings Natural Academic Sciences USA 113:10797–801. doi:10.1073/pnas.1605941113.
  • Maity, D., and D. C. Agrawal. 2007. Synthesis of iron oxide nanoparticles under oxidizing environment and their stabilization in aqueous and non-aqueous media. Journal Magnetic Materials 308:46–55. doi:10.1016/j.jmmm.2006.05.001.
  • Martínez-Fernández, D., D. Barroso, and M. Komárek. 2016. Root water transport of Helianthus annuus L. under iron oxide nanoparticle exposure. Environmental science pollution Research 23:1732–41. doi:10.1007/s11356-015-5423-5.
  • Martinez-Vargas, S., A. I. Martínez, E. E. Hernández-Beteta, O. F. Mijangos-Ricardez, V. Vázquez-Hipólito, C. Patiño-Carachure, H. Hernandez-Flores, and J. López-Luna. 2017. Arsenic adsorption on cobalt and manganese ferrite nanoparticles. Journal Materials Sciences 52:6205–15. doi:10.1007/s10853-017-0852-9.
  • Martins, C. A., A. L. Ferreira, R. C. C. de Souza, C. M. F. Hornos, V. V. Paula, A. M. Ribeiro, A. L. M. Greggi, H. R. de Carvalho, R. J. Lisboa, T. A. Ogunjimi, A. J. Adeyemi, and F. Barbosa. 2017. Evaluation of distribution, redox parameters, and genotoxicity in Wistar rats co-exposed to silver and titanium dioxide nanoparticles. Journal Toxicogical Environment Health A 80:1156–65. doi:10.1080/15287394.2017.1357376.
  • Massart, R. 1981. Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Transactions Magnetic 17:1247–48. doi:10.1109/TMAG.1981.1061188.
  • Melegari, S. P., F. Perreault, R. H. R. Costa, R. Popovic, and W. G. Matias. 2013. Evaluation of toxicity and oxidative stress induced by copper oxide nanoparticles in the green alga Chlamydomonas reinhardtii. Aquatic Toxicology (Amsterdam, Netherlands) 142–143:431–40. doi:10.1016/j.aquatox.2013.09.015.
  • OECD. 2003. OECD guideline for the testing of chemicals. Terrestrial plant test: Vegetative vigour test. OECD Guidel. Testing Chemical :1–21. doi:10.1787/20745761.
  • Oprica, L., C. Nadejde, M. Andries, E. Puscasu, D. Creanga, and M. Balasoiu. 2015. Magnetic contamination of environment-laboratory simulation of mixed iron oxides impact on microorganism cells. Environment Engineer Manage Journal 14:581–86. http://omicron.ch.tuiasi.ro/EEMJ/.
  • Puga, A. P., C. A. Abreu, L. C. A. Melo, and L. Beesley. 2015. Biochar application to a contaminated soil reduces the availability and plant uptake of zinc, lead and cadmium. Journal of Environmental Management 159:86–93. doi:10.1016/j.jenvman.2015.05.036.
  • Raghasudha, M., D. Ravinder, and P. Veerasomaiah. 2013. Magnetic properties of Cr-substituted Co-ferrite nanoparticles synthesized by citrate-gel autocombustion method. Advancement Materials Physical Chemical 3:89–96. doi:10.4236/ampc.2013.32014.
  • Rana, S., and P. T. Kalaichelvan. 2013. Ecotoxicity of nanoparticles. Hindawi Publishing Corporation, ISRN Toxicology, Article ID 574648 2013:1–11. doi:10.1155/2013/574648.
  • Rashid, M. I., T. Shahzad, M. Shahid, M. Imran, J. Dhavamani, M. I. I. Ismail, M. J. Basahi, and T. Almeelbi. 2017. Toxicity of iron oxide nanoparticles to grass litter decomposition in a sandy soil. Sciences Reports 7: 41965. doi:10.1038/srep41965.
  • Rico, C. M., J. R. Peralta-Videa, and J. L. Gardea-Torresdey. 2015. Chemistry, biochemistry of nanoparticles, and their role in antioxidant defense system in plants. In Nanotechnology and plant sciences: Nanoparticles and their impact on plants, ed. M. H. Siddiqui, et al., 1–17. Switzerland: Springer International Publishing. doi:10.1007/978-3-319-14502-0_1.
  • Römheld, V., and H. Marschner. 1986. Mobilization of iron in the rhizosphere of different plant species. In Advances in plant nutrition, ed. B. Tinker and A. Läuchli, vol. 2, 155–204. New York: Praeger Scientific.
  • Roy, S., C. K. Sen, and O. Hänninen. 1996. Monitoring of polycyclic aromatic hydrocarbons using “moss bags”: Bioaccumulation and responses of antioxidant enzymes in Fontinalis antipyretica Hedw. Chemosphere 32:2305–15. doi:10.1016/0045-6535(96)00139-7.
  • Schützendübel, A., and A. Polle. 2002. Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. Journal of Experimental Botany 53:1351–65. doi:10.1016/S0981-9428(02)01411-0.
  • Serpeloni, M. J., B. B. Lemos, A. J. P. Friedmann, B. G. R. Mazzaron, B. M. L. Pires, F. Barbosa, and A. L. M. Greggi. 2013. Antigenotoxic properties of chlorophyll b against cisplatin-induced DNA damage and its relationship with distribution of platinum and magnesium in vivo. Journal Toxicogical Environment Health A 76:345–53. doi:10.1080/15287394.2012.755485.
  • Silva-Silva, M. J., O. F. Mijangos-Ricardez, V. Vázquez-Hipólito, S. Martinez-Vargas, and J. López-Luna. 2014. Single and mixed adsorption of Cd(II) and Cr(VI) onto citrate-coated magnetite nanoparticles. Desalin Water Treatment 57:4008–17. doi:10.1080/19443994.2014.991756.
  • Singh, S., S. Sinha, R. Saxena, K. Pandey, and K. Bhatt. 2004. Translocation of metals and its effects in the tomato plants grown on various amendments of tannery waste: Evidence for involvement of antioxidants. Chemosphere 57:91–99. doi:10.1016/j.chemosphere.2004.04.041.
  • Sinha, S., A. K. Gupta, and K. Bhatt. 2007a. Uptake and translocation of metals in fenugreek grown on soil amended with tannery sludge: Involvement of antioxidants. Ecotoxicology and Environmental Safety 67:267–77. doi:10.1016/j.ecoenv.2006.07.005.
  • Sinha, S., S. Mallick, R. K. Misra, S. Singh, A. Basant, and A. K. Gupta. 2007b. Uptake and translocation of metals in Spinacia oleracea L. grown on tannery sludge-amended and contaminated soils: Effect on lipid peroxidation, morpho-anatomical changes and antioxidants. Chemosphere 67:176–87. doi:10.1016/j.chemosphere.2006.08.026.
  • Tripathi, D. K. Shweta, S. Singh, S. Singh, R. Pandey, V. P. Singh, N. C. Sharma, S. M. Prasad, N. K. Dubey, and D. K. Chauhan. 2017. An overview on manufactured nanoparticles in plants: Uptake, translocation, accumulation and phytotoxicity. Plant Physiology and Biochemistry : PPB / Societe Francaise De Physiologie Vegetale 110:2–12. doi:10.1016/j.plaphy.2016.07.030.
  • Ursache-Oprisan, M., E. Focanici, D. Creanga, and O. Caltun. 2011. Sunflower chlorophyll levels after magnetic nanoparticle supply. African Journal Biotechnology 10:7092–98. doi:10.5897/AJB11.477.
  • USEPA. 1994. Method 200.7: Determination of Metals and Trace Elements in Water and Wastes by Inductively Coupled Plasma-Atomic Emission Spectrometry, Revision 4.4. Cincinnati, OH.
  • USEPA. 1996. Method 3052, Microwave assisted acid digestion of siliceous and organically based matrices. Usepa. 1–20. doi:10.1017/CBO9781107415324.004.
  • Wang, H., X. Kou, Z. Pei, J. Q. Xiao, X. Shan, and B. Xing. 2011. Physiological effects of magnetite (Fe3O4) nanoparticles on perennial ryegrass (Lolium perenne L.) and pumpkin (Cucurbita mixta) plants. Nanotoxicology 5:30–42. doi:10.3109/17435390.2010.489206.
  • Zhang, S., H. Niu, Y. Cai, X. Zhao, and Y. Shi. 2010. Arsenite and arsenate adsorption on coprecipitated bimetal oxide magnetic nanomaterials: MnFe2O4 and CoFe2O4. Chemical Engineering Journal 158:599–607. doi:10.1016/j.cej.2010.02.013.
  • Zhu, H., J. Han, J. Q. Xiao, and Y. Jin. 2008. Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. Journal Environment Monitoring 10:713–17. doi:10.1039/b805998e.
  • Zuverza-Mena, N., D. Martínez-Fernández, W. Du, J. A. Hernandez-Viezcas, N. Bonilla-Bird, M. L. López-Moreno, M. Komárek, J. R. Peralta-Videa, and J. L. Gardea-Torresdey. 2017. Exposure of engineered nanomaterials to plants: Insights into the physiological and biochemical responses – A review. Plant Physiology and Biochemistry : PPB / Societe Francaise De Physiologie Vegetale 110:236–64. doi:10.1016/j.plaphy.2016.05.037.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.