99
Views
5
CrossRef citations to date
0
Altmetric
Articles

Copper attenuates early and late biochemical alterations induced by inorganic mercury in young rats

, , &
Pages 633-644 | Received 01 Feb 2018, Accepted 04 May 2018, Published online: 29 May 2018

References

  • Abbey, H., and E. Howard. 1973. Statistical procedures in developmental studies on species with multiple offspring. Developmental Psychobiology 6:329–35. doi:10.1002/dev.420060406.
  • Berlin, M., R. K. Zalups, and B. A. Fowler. 2007. Mercury. In Handbook on the Toxicology of Metals, eds. G. F. Nordberg, B. A. Fowler, M. Nordberg, and L. Friberg, 675–729. 3th ed. Holland: Elsevier, Amsterdam.
  • Bradford, M. 1976. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein–Dye binding. Analytical Biochemistry 72:248–54. doi:10.1016/0003-2697(76)90527-3.
  • Branco, V., S. Caito, M. Farina, J. B. T. Rocha, M. Aschner, and C. Carvalho. 2017. Biomarkers of mercury toxicity: Past, present, and future trends. Journal of Toxicology Environment Health B 20:119–54. doi:10.1080/10937404.2017.1289834.
  • Bridges, C. C., and R. K. Zalups. 2017. The aging kidney and the nephrotoxic effects of mercury. Journal of Toxicology and Environmental Health B 20:55–80. doi:10.1080/10937404.2016.1243501.
  • Brody, T. 1994. Inorganic nutrients. In Nutritional Biochemistry, ed T. Brody, 485–623. Academic Press: San Diego, Cambridge, Massachusetts, USA.
  • Carneiro, M. F. H., D. Grotto, and F. Barbosa, Jr. 2014. Inorganic and methylmercury levels in plasma are differentially associated with age, gender, and oxidative stress markers in a population exposed to mercury through fish consumption. Journal of Toxicology and Environmental Health A 77:69–79. doi:10.1080/15287394.2014.865584.
  • Ellman, G. L. 1958. A colorimetric method for determining low concentrations of mercaptans. Archives of Biochemistry and Biophysics 74:443–50. doi:10.1016/0003-9861(58)90014-6.
  • Enli, Y., S. Turgut, O. Oztekin, S. Demir, H. Enli, and G. Turgut. 2010. Cadmium intoxication of pregnant rats and fetuses: Interactions of copper supplementation. Archives of Medical Reseach 41:7–13. doi:10.1016/j.arcmed.2010.03.003.
  • Favero, A. M., C. S. Oliveira, C. Franciscato, V. A. Oliveira, J. S. F. Pereira, C. M. Bertoncheli, S. C. A. Luz, V. L. Dressler, E. M. M. Flores, and M. E. Pereira. 2014. Lactating and non-lactating rats differ to renal toxicity induced by mercuric chloride: The preventive effect of zinc chloride. Cell Biochemistry and Function 32:420–28. doi:10.1002/cbf.3032.
  • Fiuza, T. L., C. S. Oliveira, M. Costa, V. A. Oliveira, G. Zeni, and M. E. Pereira. 2015. Effectiveness of (PhSe)2 in protect against the HgCl2 toxicity. Journal of Trace Elements in Medicine and Biology 29:255–62. doi:10.1016/j.jtemb.2014.05.008.
  • Franciscato, C., T. M. Bueno, L. Moraes-Silva, F. A. Duarte, E. M. M. Flores, V. L. Dressler, and M. E. Pereira. 2009b. High doses of zinc and copper alter neither cerebral metal levels nor acetylcholinesterase activity of suckling rats. EXCLI Journal 8:138–47.
  • Franciscato, C., F. R. Goulart, N. M. Lovatto, F. A. Duarte, E. M. M. Flores, V. L. Dressler, N. C. Peixoto, and M. E. Pereira. 2009a. ZnCl2 exposure protects against behavioral and acetylcholinesterase changes induced by HgCl2. International Journal of Developmental Neuroscience 27:459–68. doi:10.1016/j.ijdevneu.2009.05.002.
  • Franciscato, C., L. Moraes-Silva, F. A. Duarte, C. S. Oliveira, R. P. Ineu, E. M. M. Flores, V. L. Dressler, N. C. Peixoto, and M. E. Pereira. 2011. Delayed biochemical changes induced by mercury intoxication are prevented by zinc pre-exposure. Ecotoxicology and Environmental Safety 74:480–86. doi:10.1016/j.ecoenv.2010.11.011.
  • Gaetke, L. M., and C. K. Chow. 2003. Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 189:147–63. doi:10.1016/S0300-483X(03)00159-8.
  • Holmes, P., K. A. F. James, and L. S. Levy. 2009. Is low-level environmental mercury exposure of concern to human health?. Science of the Total Environment 408:171–82. doi:10.1016/j.scitotenv.2009.09.043.
  • Hordyjewska, A., L. Popiolek, and J. Kocot. 2014. The many “faces” of copper in medicine and treatment. Biometals 27:611–21. doi:10.1007/s10534-014-9736-5.
  • Ineu, R. P., C. S. Oliveira, V. A. Oliveira, L. Moraes-Silva, S. C. Almeida-Luz, and M. E. Pereira. 2013. Antioxidant effect of zinc chloride against ethanol-induced gastrointestinal lesions in rats. Food Chemistry and Toxicology 58:522–29. doi:10.1016/j.fct.2013.05.022.
  • Ineu, R. P., M. Santos, O. S. R. Barros, C. W. Nogueira, J. B. T. Rocha, G. Zeni, and M. E. Pereira. 2012. Antioxidant activity and low toxicity of (E)-1-(1-(methylthio)-1-(selenopheny) hept-1-en-2-yl) pyrrolidin-2-one. Cell Biology and Toxicology 28:213–23. doi:10.1007/s10565-012-9217-y.
  • Mason, R. 1982. Metabolism of cadmium in the neonate: Effect of hepatic zinc, copper and metallothionein concentrations on the uptake of cadmium in the rat liver. Biochemical Pharmacology 31:1761–64. doi:10.1016/0006-2952(82)90681-5.
  • Mesquita, M., T. F. Pedroso, C. S. Oliveira, V. A. Oliveira, R. F. Santos, C. A. Bizzi, and M. E. Pereira. 2016. Effects of zinc against mercury toxicity in female rats 12 and 48 hours after HgCl2 exposure. EXCLI Journal 15:256–67. doi:10.17179/excli2015-709.
  • Moraes-Silva, L., T. M. Bueno, C. Franciscato, R. P. Ineu, and M. E. Pereira. 2012a. Effectiveness of copper chloride in protecting against alterations induced by mercury chloride in newborn rats. Journal of Biochemistry and Molecular Toxicology 26:354–59. doi:10.1002/jbt.21429.
  • Moraes-Silva, L., T. M. Bueno, C. Franciscato, C. S. Oliveira, N. C. Peixoto, and M. E. Pereira. 2012b. Mercury chloride increases hepatic alanine aminotransferase and glucose 6-phosphatase activities in newborn rats in vivo. Cell Biology International 36:561–66. doi:10.1042/CBI20100475.
  • Moraes-Silva, L., L. S. Siqueira, V. A. Oliveira, C. S. Oliveira, R. P. Ineu, T. F. Pedroso, M. M. Fonseca, and M. E. Pereira. 2014. Preventive effect of CuCl2 on behavioral alterations and mercury accumulation in central nervous system induced by HgCl2 in newborn rats. Journal of Biochemistry and Molecular Toxicology 28:328–35. doi:10.1002/jbt.21569.
  • Nies, A. S., and S. P. Spielberg. 1996. Principles of Therapeutics. In Goodman & Gilman’s The Pharmacological Basis of Therapeutics, eds J. G. Hardman, A. G. Gilman, and L. E. Limbird, 34–63. New York: McGraw-Hill.
  • Oliveira, C. S., A. M. Favero, C. Franciscato, S. C. A. Da Luz, and M. E. Pereira. 2014a. Distinct response of lactating and nonlactating rats exposed to inorganic mercury on hepatic δ-aminolevulinic acid dehydratase activity. Biological Trace Element Research 158:230–37. doi:10.1007/s12011-014-9931-9.
  • Oliveira, C. S., L. Joshee, R. K. Zalups, and C. C. Bridges. 2016a. Compensatory renal hypertrophy and the handling of an acute nephrotoxicant in a model of aging. Experimental Gerontology 75:16–23. doi:10.1016/j.exger.2016.01.001.
  • Oliveira, C. S., L. Joshee, R. K. Zalups, M. E. Pereira, and C. C. Bridges. 2015. Disposition of inorganic mercury in pregnant rats and their offspring. Toxicology 335:62–71. doi:10.1016/j.tox.2015.07.006.
  • Oliveira, C. S., V. A. Oliveira, L. M. Costa, T. F. Pedroso, M. M. Fonseca, J. S. Bernardi, T. L. Fiuza, and M. E. Pereira. 2016b. Inorganic mercury exposure in drinking water alters essential metal homeostasis in pregnant rats without altering rat pup behavior. Reproductive Toxicology 65:18–23. doi:10.1016/j.reprotox.2016.06.013.
  • Oliveira, C. S., B. C. Piccoli, M. Aschner, and J. B. T. Rocha. 2017. Chemical speciation of selenium and mercury as determinant of their neurotoxicity. In Neurotoxicity of Metals. Advances in Neurobiology, Eds M. Aschner and L. Costa. vol. 18. Cham: Springer.
  • Oliveira, V. A., C. S. Oliveira, R. P. Ineu, L. Moraes-Silva, L. F. Siqueira, and M. E. Pereira. 2014b. Lactating and non-lactating rats differ in sensitivity to HgCl2: Protective effect of ZnCl2. Journal of Trace Elements in Medicine and Biology 28:240–46. doi:10.1016/j.jtemb.2014.01.005.
  • Oliveira, V. A., C. S. Oliveira, M. Mesquita, T. F. Pedroso, L. M. Costa, T. L. Fiuza, and M. E. Pereira. 2015b. Zinc and N-acetylcysteine modify mercury distribution and promote increase in hepatic metallothionein levels. Journal of Trace Elements in Medicine and Biology 32:183–88. doi:10.1016/j.jtemb.2015.06.006.
  • Orr, S. E., and C. C. Bridges. 2017. Chronic kidney disease and exposure to nephrotoxic metals. International Journal of Molecular Science 18:1039. doi:10.3390/ijms18051039.
  • Papanikolaou, G., and K. Pantopoulos. 2005. Iron metabolism and toxicity. Toxicology and Applied Pharmacology 202:199–211. doi:10.1016/j.taap.2004.06.021.
  • Pedersen, S. N., K. L. Pedersen, P. Hojrup, J. Knudsen, and M. H. Depledge. 1998. Induction and identification of cadmiun-, zinc-, and copper-metallothionein in the shore crab Carcinus maenas (L.). Comparative Biochemistry and Physiology Part C 120:251–59. doi:10.1016/S0742-8413(98)10003-8.
  • Peixoto, N. C., C. P. Kratz, T. Roza, V. M. Morsch, and M. E. Pereira. 2007a. Effects of HgCl2 on porphobilinogen-synthase (E.C. 1.2.1.24) activity and on mercury levels in rats exposed during different precocious periods of postnatal life. Cell Biology International 31:1057–62. doi:10.1016/j.cellbi.2007.03.026.
  • Peixoto, N. C., and M. E. Pereira. 2007. Effectiveness of ZnCl2 in protecting against nephrotoxicity induced by HgCl2 in newborn rats. Ecotoxicology and Environmental Safety 66:441–46. doi:10.1016/j.ecoenv.2006.02.012.
  • Peixoto, N. C., L. C. Rocha, D. P. Moraes, M. J. Bebianno, V. L. Dressler, E. M. M. Flores, and M. E. Pereira. 2008. Changes in levels of essential elements in suckling rats exposed to zinc and mercury. Chemosphere 72:1327–32. doi:10.1016/j.chemosphere.2008.04.027.
  • Peixoto, N. C., T. Roza, E. M. M. Flores, and M. E. Pereira. 2003. Effects of zinc and cadmium on HgCl2-δ-ALA-D inhibition and Hg levels in tissues of suckling rats. Toxicology Letters 146:17–25. doi:10.1016/j.toxlet.2003.08.006.
  • Peixoto, N. C., T. Roza, V. M. Morsch, and M. E. Pereira. 2007c. Behavioral alterations induced by HgCl2 depend on the postnatal period of exposure. International Journal of Developmental Neuroscience 25:39–46. doi:10.1016/j.ijdevneu.2006.11.002.
  • Peixoto, N. C., T. Roza, and M. E. Pereira. 2004. Sensitivity of δ-ALA-D (E.C.4.2.1.24) of rats to metals in vitro depends on the stage of postnatal growth and tissue. Toxicology in Vitro 18:805–09. doi:10.1016/j.tiv.2004.04.002.
  • Peixoto, N. C., M. A. Serafim, E. M. M. Flores, M. J. Bebianno, and M. E. Pereira. 2007b. Metallothionein, zinc and mercury levels in tissues of young rats exposed to zinc and subsequently to mercury. Life Science 81:1264–71. doi:10.1016/j.lfs.2007.08.038.
  • Peraza, M. A., F. Ayala-Fierro, D. S. Barber, E. Casarez, and L. T. Rael. 1998. Effects of micronutrients on metal toxicity. Environmental Health Perspectives 106:203–16.
  • Pinho, A. I., C. S. Oliveira, F. L. Lovato, E. P. Waczuk, B. C. Piccoli, A. A. Boligon, N. F. Leite, H. D. M. Coutinho, T. Posser, J. B. T. Rocha, and J. L. Franco. 2017. Antioxidant and mercury chelating activity of Psidium guajava var. pomifera L. leaves hydroalcoholic extract. Journal of Toxicology and Environmental Health A 80:1301–13. doi:10.1080/15287394.2017.1382408.
  • Prohaska, C., K. Pomazal, and I. Steffan. 2000. Determination of Ca, Mg, Fe, Cu, and Zn in blood fractions and whole blood of humans by ICP-OES. Fresenius’ Journal of Analytical Chemistry 367:479–84. doi:10.1007/s002160000383.
  • Risher, J. F., and S. N. Amler. 2005. Mercury exposure: Evaluation and intervention the inappropriate use of chelating agents in the diagnosis and treatment of putative mercury poisoning. Neurotoxicology 26:691–99. doi:10.1016/j.neuro.2005.05.004.
  • Rocha, J. B. T., M. E. Pereira, T. Emanuelli, R. S. Christofari, and D. O. Souza. 1995. Effect of treatment with mercury chloride and lead acetate during the second stage of rapid postnatal brain growth on δ-aminolevulinic acid dehydratase (ALA-D) activity in brain, liver, kidney and blood of suckling rats. Toxicology 100:27–37. doi:10.1016/0300-483X(95)03054-J.
  • Rocha, J. B. T., L. K. Rocha, T. Emanuelli, and M. E. Pereira. 2001. Effect of mercuric chloride and lead acetate treatment during the second stage of rapid post-natal brain growth on the behavioral response to chlorpromazine and on δ-ALA-D activity in weaning rats. Toxicology Letters 125:143–50. doi:10.1016/S0378-4274(01)00435-0.
  • Rocha, J. B. T., R. A. Saraiva, S. C. Garcia, F. S. Gravina, and C. W. Nogueira. 2012. Aminolevulinate dehydratase (δ-ALA-D) as marker protein of intoxication with metals and other pro-oxidant situations. Toxicology Research 1:85–102. doi:10.1039/C2TX20014G.
  • Sandbichler, A. M., and M. Höckner. 2016. Cadmium protection strategies-a hidden trade-off? International Journal of Molecular Science 17:139. doi:10.3390/ijms17010139.
  • Sassa, S. 1982. Delta-aminolevulinic acid dehydratase assay. Enzyme 28:133–45. doi:10.1159/000459097.
  • Scheiber, I. F., J. F. B. Mercer, and R. Dringen. 2014. Metabolism and functions of cooper in brain. Progress in Neurobiology 116:33–57. doi:10.1016/j.pneurobio.2014.01.002.
  • Shen, J., Z. Huang, Z. Zhuang, X. Wang, and F. S. C. Lee. 2005. Investigation of mercury metallothionein complexes in tissues of rat after oral intake of HgCl2. Applied Organometallic Chemistry 19:140–46. doi:10.1002/aoc.805.
  • Sontia, B., and R. M. Touyz. 2007. Magnesium transport in hypertension. Pathophysiology 14:205–11. doi:10.1016/j.pathophys.2007.09.005.
  • Stern, B. R. 2010. Essentiality and toxicity in copper health risk assessment: Overview, update and regulatory considerations. Journal of Toxicology and Environmental Health A 73:114–27. doi:10.1080/15287390903337100.
  • Sweet, L. I., and J. T. Zelikoff. 2001. Toxicology and immunotoxicology of mercury: A comparative review in fish and humans. Journal of Toxicology and Environmental Health B 4:161–205. doi:10.1080/10937400117236.
  • Vormann, J. 2003. Magnesium: Nutrition and metabolism. Molecular Aspects of Medcine 24:27–37. doi:10.1016/S0098-2997(02)00089-4.
  • Zalups, R. K. 2000. Molecular interactions with mercury in the kidney. Pharmacological Reviews 52:113–43.
  • Zalups, R. K., and M. G. Cherian. 1992a. Renal metallothionein metabolism after a reduction of renal mass. I. Effect of unilateral nephrectomy and compensatory renal growth on basal and metal-induced renal metallothionein metabolism. Toxicology 71:83–102. doi:10.1016/0300-483X(92)90056-K.
  • Zalups, R. K., and M. G. Cherian. 1992b. Renal metallothionein metabolism after a reduction of renal mass. II. Effect of zinc pretreatment on the renal toxicity and intrarenal accumulation of inorganic mercury. Toxicology 71:103–17. doi:10.1016/0300-483X(92)90057-L.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.