367
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Prevention through design: insights from computational fluid dynamics modeling to predict exposure to ultrafine particles from 3D printing

ORCID Icon, , , , , , , & show all

References

  • Alberts, E., M. Ballentine, E. Barnes, and A. Kennedy. 2021. Impact of metal additives on particle emission profiles from a fused filament fabrication 3D printer. Atmos. Environ. 244 :117956. doi:10.1016/j.atmosenv.2020.
  • ANSI/CAN/UL. 2019. ANSI/CAN/UL 2904: Standard method for testing and assessing particle and chemical emissions from 3D printers. Ottawa, Ontario: Underwriters Laboratories Inc.
  • Anthony, T. R. 2009. Mathematical models for estimating occupational exposures to chemicals. Falls Church, VA: AIHA Press.
  • Azimi, P., D. Zhao, C. Pouzet, N. E. Crain, and B. Stephens. 2016. Emissions of ultrafine particles and volatile organic compounds from commercially available desktop three-dimensional printers with multiple filaments. Environ. Sci. Technol. 50 (3):1260–68. doi:10.1021/acs.est.5b04983.
  • Azimi, P., T. Fazli, and B. Stephens. 2017. Predicting concentrations of ultrafine particles and volatile organic compounds resulting from desktop 3D printer operation and the impact of potential control strategies. J. Ind. Ecol. 21 (S1):S107–S119. doi:10.1111/jiec.12578.
  • Becker, H., F. Herzberg, A. Schulte, and M. Kolossa-Gehring. 2011. The carcinogenic potential of nanomaterials, their release from products and options for regulating them. Int. J. Hyg. Environ. Health 214 (3):231–38. doi:10.1016/j.ijheh.2010.11.004.
  • Bennett, W. D., K. L. Zeman, and A. M. Jarabek. 2007. Nasal contribution to breathing and fine particle deposition in children versus adults. J. Toxicol. Environ. Health A 71 (3):227–37. doi:10.1080/15287390701598200.
  • Berman, A., E. Deuermeyer, B. Nam, S. L. Chu, and F. Quek. 2018. Exploring the 3D printing process for young children in curriculum-aligned making in the classroom. Paper read at Proceedings of the 17th ACM Conference on Interaction Design and Children, Trondheim, Norway.
  • Buchman, J. T., N. V. Hudson-Smith, K. M. Landy, and C. L. Haynes. 2019. Understanding nanoparticle toxicity mechanisms to inform redesign strategies to reduce environmental impact. Acc. Chem. Res. 52 (6):1632–42. doi:10.1021/acs.accounts.9b00053.
  • Byrley, P., B. J. George, W. K. Boyes, and K. Rogers. 2019. Particle emissions from fused deposition modeling 3D printers: Evaluation and meta-analysis. Sci. Total Environ. 655:395–407. doi:10.1016/j.scitotenv.2018.11.070.
  • Chan, F. L., C.-Y. Hon, S. M. Tarlo, N. Rajaram, and R. House. 2020. Emissions and health risks from the use of 3D printers in an occupational setting. J. Toxicol. Environ. Health A 83 (7):279–87. doi:10.1080/15287394.2020.1751758.
  • Chan, F. L., R. House, I. Kudla, J. C. Lipszyc, N. Rajaram, and S. M. Tarlo. 2018. Health survey of employees regularly using 3D printers. Occup. Med. (Chic Ill) 68 (3):211–14. doi:10.1093/occmed/kqy042.
  • Chang, J. C., and S. R. Hanna. 2004. Air quality model performance evaluation. Meteorol. Atmos. Phys. 87 (1–3):167–96. doi:10.1007/s00703-003-0070-7.
  • Chen, R., B. Hu, Y. Liu, J. Xu, G. Yang, D. Xu, and C. Chen. 2016. Beyond PM2. 5: The role of ultrafine particles on adverse health effects of air pollution. Biochimica Et Biophysica Acta (Bba)-general Subjects 1860 (12):2844–55. doi:10.1016/j.bbagen.2016.03.019.
  • Davis, A. Y., Q. Zhang, J. P. S. Wong, R. J. Weber, and M. S. Black. 2019. Characterization of volatile organic compound emissions from consumer level material extrusion 3D printers. Build. Environ. 160:106209. doi:10.1016/j.buildenv.2019.106209.
  • Dobrovolskaia, M. A., M. Shurin, and A. A. Shvedova. 2016. Current understanding of interactions between nanoparticles and the immune system. Toxicol. Appl. Pharmacol. 299:78–89. doi:10.1016/j.taap.2015.12.022.
  • Farcas, M. T., A. B. Stefaniak, A. K. Knepp, L. Bowers, W. K. Mandler, M. Kashon, S. R. Jackson, T. A. Stueckle, J. D. Sisler, S. A. Friend, et al. 2019. Acrylonitrile butadiene styrene (ABS) and polycarbonate (PC) filaments three-dimensional (3-D) printer emissions-induced cell toxicity. Toxicol. Lett. 317:1–12. doi:10.1016/j.toxlet.2019.09.013.
  • Farcas, M. T., W. McKinney, C. Qi, K. W. Mandler, L. Battelli, S. A. Friend, A. B. Stefaniak, M. Jackson, M. Orandle, A. Winn, et al. 2020. Pulmonary and systemic toxicity in rats following inhalation exposure of 3-D printer emissions from acrylonitrile butadiene styrene (ABS) filament. Inhal Toxicol 32 (11–12):403–18. doi:10.1080/08958378.2020.1834034.
  • Geraci, C., D. Heidel, C. Sayes, L. Hodson, P. Schulte, A. Eastlake, and S. Brenner. 2015. Perspectives on the design of safer nanomaterials and manufacturing processes. J. Nanopart. Res. 17 (9):17. doi:10.1007/s11051-015-3152-9.
  • Gümperlein, I., E. Fischer, G. Dietrich‐Gümperlein, S. Karrasch, D. Nowak, R. A. Jörres, and R. Schierl. 2018. Acute health effects of desktop 3D printing (fused deposition modeling) using acrylonitrile butadiene styrene and polylactic acid materials: An experimental exposure study in human volunteers. Indoor Air 28 (4):611–23. doi:10.1111/ina.12458.
  • Gyekye, S. A., and S. Salminen. 2009. Educational status and organizational safety climate: Does educational attainment influence workers’ perceptions of workplace safety? Saf Sci 47 (1):20–28. doi:10.1016/j.ssci.2007.12.007.
  • Heinzerling, A., J. Hsu, and F. Yip. 2016. Respiratory health effects of ultrafine particles in children: A literature review. Water Air Soil Pollut. 227 (1):32. doi:10.1007/s11270-015-2726-6.
  • House, R., N. Rajaram, and S. M. Tarlo. 2017. Case report of asthma associated with 3D printing. Occup. Med. (Chic Ill) 67 (8):652–54. doi:10.1093/occmed/kqx129.
  • Hull, M., A. J. Kennedy, C. Detzel, P. Vikesland, and M. A. Chappell. 2012. Moving beyond mass: The unmet need to consider dose metrics in environmental nanotoxicology studies. Environ. Sci. Technol. 46 (20):10881-82. doi:10.1021/es3035285.
  • Kim, T. K., B.-C. Jeon, E. Bae, K. K. Bae, K.-T. Han, and E.-C. Park. 2017. Association between personal protective equipment use and injury occurrence among the Republic of Korea armed forces. Mil. Med. 182 (7):e1900–e1907. doi:10.7205/MILMED-D-16-00336.
  • Kwon, O., C. Yoon, S. Ham, J. Park, J. Lee, D. Yoo, and Y. Kim. 2017. Characterization and control of nanoparticle emission during 3D printing. Environ. Sci. Technol. 51 (18):10357–68. doi:10.1021/acs.est.7b01454.
  • Larson, E., and C. T. Liverman. 2011. Section 4 - Using PPE: Individual and Organizational Issues; Institute of Medicine (US). Committee on Personal Protective Equipment for Healthcare Personnel to Prevent Transmission of Pandemic Influenza and Other Viral Respiratory Infections: Current Research Issues. Preventing transmission of pandemic influenza and other viral respiratory diseases: Personal protective equipment for healthcare personnel: Update 2010. Washington, DC: National Academies Press.
  • Lee, S.-H., P.-H. Lee, H.-J. Liang, C.-H. Tang, T.-F. Chen, T.-J. Cheng, and C.-Y. Lin. 2020. Brain lipid profiles in the spontaneously hypertensive rat after subchronic real-world exposure to ambient fine particulate matter. Sci. Total Environ. 707:135603. doi:10.1016/j.scitotenv.2019.135603.
  • Li, C. H., C. C. Shen, Y. W. Cheng, S. H. Huang, C. C. Wu, C. C. Kao, J. W. Liao, and J. J. Kang. 2012. Organ biodistribution, clearance, and genotoxicity of orally administered zinc oxide nanoparticles in mice. Nanotoxicology 6 (7):746–56. doi:10.3109/17435390.2011.620717.
  • MakersEmpire. 2020. Best 3D printers for schools (with built-in air filtration). Claymont, DE: MakersEmpire.
  • Mele, B., R. Strode, D. Hall, C. Strode, and A. Korchevskiy. 2016. Evaluating exhaust ventilation: What every industrial hygienist should know about fan selection.Synergist (October).
  • Mendes, L., A. Kangas, K. Kukko, B. Molgaard, A. Saamanen, T. Kanerva, I. F. Ituarte, M. Huhtiniemi, H. Stockmann-Juvela, J. Partanen, et al. 2017. Characterization of emissions from a Desktop 3D printer. J. Ind. Ecol. 21 (S1):S94–S106. doi:10.1111/jiec.12569.
  • Mueller, H.-L., B. Robinson, B. A. Muggenburg, N. A. Gillett, and R. A. Guilmette. 1990. Particle distribution in lung and lymph node tissues of rats and dogs and the migration of particle-containing alveolar cells in vitro. J. Toxicol. Environ. Health 30 (3):141–65. doi:10.1080/15287399009531419.
  • Oberdörster, G., E. Oberdörster, and J. Oberdörster. 2005. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 113 (7):823–39. doi:10.1289/ehp.7339.
  • Oberdörster, G., Z. Sharp, V. Atudorei, A. Elder, R. Gelein, W. Kreyling, and C. Cox. 2004. Translocation of inhaled ultrafine particles to the brain. Inhalation Toxicology 16 (6–7):437–45. doi:10.1080/08958370490439597.
  • Ohlwein, S., R. Kappeler, M. Kutlar Joss, N. Künzli, and B. Hoffmann. 2019. Health effects of ultrafine particles: A systematic literature review update of epidemiological evidence. Int. J. Public Health 64 (4):547–59. doi:10.1007/s00038-019-01202-7.
  • OSHA. Air sampling and analytical procedures for determining concentrations of cotton dust. In Occupational safety and health standards - toxic and hazardous substances. e-CFR.
  • Pepi, M., N. Zander, and M. Gillan. 2018. Towards expeditionary battlefield manufacturing using recycled, reclaimed, and scrap materials. J. Occup. Med. 70:2359–64.
  • Petretta, M., G. Desando, B. Grigolo, and L. Roseti. 2019. 3D printing of musculoskeletal tissues: Impact on safety and health at work. J. Toxicol. Environ. Health A 82 (16):891–912. doi:10.1080/15287394.2019.1663458.
  • Phuong, N. L., and K. Ito. 2015. Investigation of flow pattern in upper human airway including oral and nasal inhalation by PIV and CFD. Build. Environ. 94:504–15. doi:10.1016/j.buildenv.2015.10.002.
  • Poikkimaki, M., V. Koljonen, N. Leskinen, M. Narhi, O. Kangasniemi, O. Kausiala, and M. D. Maso. 2019. Nanocluster aerosol emissions of a 3D printer. Environ. Sci. Technol. 53 (23):13618–28. doi:10.1021/acs.est.9b05317.
  • Sargent, J. F., Jr, and R. X. Schwartz. 2019. 3D printing: Overview, impacts, and the federal role. Congressional Res. Service R45852.
  • Schraufnagel, D. E. 2020. The health effects of ultrafine particles. Exp. Mol. Med. 52 (3):311–17. doi:10.1038/s12276-020-0403-3.
  • Shin, W.-Y., J.-H. Kim, G. Lee, S. Choi, S. R. Kim, Y.-C. Hong, and S. M. Park. 2020. Exposure to ambient fine particulate matter is associated with changes in fasting glucose and lipid profiles: A nationwide cohort study. BMC Public Health 20 (1):1–11. doi:10.1186/s12889-020-08503-0.
  • Silva, R. M., C. TeeSy, L. Franzi, A. Weir, P. Westerhoff, J. E. Evans, and K. E. Pinkerton. 2013. Biological response to nano-scale titanium dioxide (TiO2): Role of particle dose, shape, and retention. J. Toxicol. Environ. Health A 76 (16):953–72. doi:10.1080/15287394.2013.826567.
  • Slezakova, K., C. Peixoto, M. Do Carmo Pereira, and S. Morais. 2019. (Ultra) Fine particle concentrations and exposure in different indoor and outdoor microenvironments during physical exercising. J. Toxicol. Environ. Health A 82 (9):591–602. doi:10.1080/15287394.2019.1636494.
  • Stefaniak, A. B., A. R. Johnson, S. Du Preez, D. R. Hammond, J. R. Wells, J. E. Ham, R. F. LeBouf, S. B. Martin Jr, M. G. Duling, and L. N. Bowers. 2019. Insights into emissions and exposures from use of industrial-scale additive manufacturing machines. Saf Health Work 10 (2):229–36. doi:10.1016/j.shaw.2018.10.003.
  • Stefaniak, A. B., R. F. LeBouf, M. G. Duling, J. Yi, A. B. Abukabda, C. R. McBride, and T. R. Nurkiewicz. 2017a. Inhalation exposure to three-dimensional printer emissions stimulates acute hypertension and microvascular dysfunction. Toxicol. Appl. Pharmacol. 335:1–5. doi:10.1016/j.taap.2017.09.016.
  • Stefaniak, AB, RF LeBouf, MG Duling, J Yi, AB Abukabda, CR McBride, and TR Nurkiewicz. 2017b. Inhalation exposure to three-dimensional printer emissions stimulates acute hypertension and microvascular dysfunction. Toxicology and applied pharmacology. 335:1–5.
  • Stephens, B., P. Azimi, Z. El Orch, and T. Ramos. 2013. Ultrafine particle emissions from desktop 3D printers. Atmos. Environ. 79:334–39. doi:10.1016/j.atmosenv.2013.06.050.
  • U.S. Army Research, Development and Engineering Command. 2020. Additive manufacturing. U.S. Army 2017 Accessed April 21, 2020. https://www.army.mil/standto/archive_2017-08-08/
  • USEPA. 2020. What are the air quality standards for PM? October 11, 2019. Accessed May 22, 2020. https://www3.epa.gov/region1/airquality/pm-aq-standards.html
  • Ventä-Olkkonen, L., H. Hartikainen, B. Norouzi, N. Iivari, and M. Kinnula. 2019. A literature review of the practice of educating children about technology making. Paper read at IFIP Conference on Human-Computer Interaction, Paphos, Cyprus.
  • Wojityla, S., P. Klama, and T. Bara. 2017. Is 3D printing safe? Analysis of the thermal treatment of thermoplastics: ABS, PLA, PET, and nylon. J. Occup. Environ. Hyg. 14 (6):D80–D85. doi:10.1080/15459624.2017.1285489.
  • Xu, G., and J. Wang. 2017. CFD modeling of particle dispersion and deposition coupled with particle dynamical models in a ventilated room. Atmos. Environ. 166:300–14. doi:10.1016/j.atmosenv.2017.07.027.
  • Yi, J., R. F. LeBouf, M. G. Duling, T. Nurkiewicz, B. T. Chen, D. Schwegler-Berry, M. A. Virji, and A. B. Stefaniak. 2016. Emission of particulate matter from a desktop three-dimensional (3D) printer. J. Toxicol. Environ. Health A 79 (11):453–65. doi:10.1080/15287394.2016.1166467.
  • Youn, J.-S., J.-W. Seo, S. Han, and K.-J. Jeon. 2019. Characteristics of nanoparticle formation and hazardous air pollutants emitted by 3D printer operations: From emission to inhalation. RSC Adv 9 (34):19606–12. doi:10.1039/C9RA03248G.
  • Zhang, Q., G. Sharma, J. P. S. Wong, A. Y. Davis, M. S. Black, P. Biswas, and R. J. Weber. 2018. Investigating particle emissions and aerosol dynamics from a consumer fused deposition modeling 3D printer with a lognormal moment aerosol model. Aerosol Sci. Technol. 52 (10):1099–111. doi:10.1080/02786826.2018.1464115.
  • Zhang, Q., J. P. S. Wong, A. Y. Davis, M. S. Black, and R. J. Weber. 2017. Characterization of particle emissions from consumer fused deposition modeling 3D printers. Aerosol Sci. Technol. 51 (11):1275–86. doi:10.1080/02786826.2017.1342029.
  • Zhang, Q., M. Pardo, Y. Rudich, I. Kaplan-Ashiri, J. P. S. Wong, A. Y. Davis, M. S. Black, and R. J. Weber. 2019. Chemical composition and toxicity of particles emitted from a consumer-level 3D printer using various materials. Environ. Sci. Technol. 53 (20):12054–61. doi:10.1021/acs.est.9b04168.
  • Zhou, Y., X. Kong, A. Chen, and S. Cao. 2015. Investigation of ultrafine particle emissions of desktop 3D printers in the clean room. Procedia Eng. 121:506–12. doi:10.1016/j.proeng.2015.08.1099.
  • Zolnik, B. S., Á. González-Fernández, N. Sadrieh, and M. A. Dobrovolskaia. 2010. Minireview: Nanoparticles and the immune system. Endocrinology 151 (2):458–65. doi:10.1210/en.2009-1082.
  • Zontek, T. L., S. Hollenbeck, J. Jankovic, and B. R. Ogle. 2019. Modeling particle emissions from three-dimensional printing with acrylonitrile–butadiene–styrene polymer filament. Environ. Sci. Technol. 53 (16):9656–63. doi:10.1021/acs.est.9b02818.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.