434
Views
2
CrossRef citations to date
0
Altmetric
Research Article

An interlaboratory evaluation of the variability in arsenic and lead relative bioavailability when assessed using a mouse bioassay

ORCID Icon, , , , , , , , & ORCID Icon show all

References

  • Ayuso-Álvarez, A., L. Simón, O. Nuñez, C. Rodríguez-Blázquez, I. Martín-Méndez, A. Bel-lán, G. López-Abente, J. Merlo, P. Fernandez-Navarro, and I. Galán. 2019. Association between heavy metals and metalloids in topsoil and mental health in the adult population of Spain. Environ. Res. 179:108784. doi:10.1016/j.envres.2019.108784.
  • Bannon, D. I., J. W. Drexler, G. M. Fent, S. W. Casteel, P. J. Hunter, W. J. Brattin, and M. A. Major. 2009. Evaluation of small arms range soils for metal contamination and lead bioavailability. Environ. Sci. Technol. 43:9071–76. doi:10.1021/es901834h.
  • Bannon, D. I., M. E. Portnoy, L. Olivi, P. S. J. Lees, V. C. Culotta, and J. P. Bressler. 2002. Uptake of lead and iron by divalent metal transporter 1 in yeast and mammalian cells. Biochem. Biophys. Res. Commun. 295:978–84. doi:10.1016/S0006-291X(02)00756-8.
  • Basta, N. T., and A. Juhasz. 2014. Using bioavailability and/or in vitro gastrointestinal bioaccessibility testing to adjust human exposure to arsenic from soil ingestion. Rev. Mineral. Geochem. 79:451–72. doi:10.2138/rmg.2014.79.9.
  • Bradham, K. D., W. Green, H. Hayes, C. Nelson, P. Alava, J. Misenheimer, G. L. Diamond, W. C. Thayer, and D. J. Thomas. 2016. Estimating relative bioavailability of soil lead in the mouse. J. Toxicol. Environ. Health A 79:1179–82. doi:10.1080/15287394.2016.1221789.
  • Bradham, K. D., C. Herde, P. Herde, A. L. Juhasz, K. Herbin-Davis, B. Elek, A. Farthing, G. L. Diamond, and D. J. Thomas. 2020. Intra- and interlaboratory evaluation of an assay of soil arsenic relative bioavailability in mice. J. Agric. Food Chem. 68:2615–22. doi:10.1021/acs.jafc.9b06537.
  • Bradham, K. D., C. Nelson, A. L. Juhasz, E. Smith, K. Scheckel, D. R. Obenour, B. W. Miller, and D. J. Thomas. 2015. Independent data validation of an in vitro method for the prediction of the relative bioavailability of arsenic in contaminated soils. Environ. Sci. Technol. 49:6312–18. doi:10.1021/acs.est.5b00905.
  • Bradham, K. D., C. Nelson, J. Kelly, A. Pomales, K. Scruton, T. Dignam, J. Misenheimer, K. Li, D. R. Obenour, and D. J. Thomas. 2017. Relationship between total and bioaccessible lead on children’s blood lead levels in urban residential Philadelphia soils. Environ. Sci. Technol. 51:10005–11. doi:10.1021/acs.est.7b02058.
  • Bradham, K. D., C. M. Nelson, G. L. Diamond, W. C. Thayer, K. G. Scheckel, M. Noerpel, K. Herbin-Davis, B. Elek, and D. J. Thomas. 2019. Dietary lead and phosphate interactions affect oral bioavailability of soil lead in the mouse. Environ. Sci. Technol. 53:12556–64. doi:10.1021/acs.est.9b02803.
  • Bradham, K. D., K. G. Scheckel, C. M. Nelson, P. E. Seales, G. E. Lee, M. F. Hughes, B. W. Miller, A. Yeow, T. Gilmore, S. M. Serda, et al. 2011. Relative bioavailability and bioaccessibility and speciation of arsenic in contaminated soils. Environ. Health Perspect. 119:1629–34. doi:10.1289/ehp.1003352.
  • Carlin, D. J., M. F. Naujokas, K. D. Bradham, J. Cowden, M. Heacock, H. F. Henry, J. S. Lee, D. J. Thomas, C. Thompson, E. J. Tokar, et al. 2016. Arsenic and environmental health: State of the science and future research opportunities. Environ. Health Perspect. 124:890–99. doi:10.1289/ehp.1510209.
  • Carlson, K., and R. L. Neitzel. 2018. Hearing loss, lead (Pb) exposure, and noise: A sound approach to ototoxicity exploration. J. Toxicol. Environ. Health B 21 (5):335–55. doi:10.1080/10937404.2018.1562391.
  • Carrizales, L., I. Razo, J. I. Téllez-Hernández, R. Torres-Nerio, A. Torres, L. E. Batres, A. Cubilla, and F. Díaz-Barriga. 2006. Exposure to arsenic and lead of children living near a copper-smelter in San Luis Potosi, Mexico: Importance of soil contamination for exposure of children. Environ. Res 101 (1):1–10. doi:10.1016/j.envres.2005.07.010.
  • Casteel, S. W., G. Fent, L. Myoungheon, W. J. Brattin, and S. Hunter. 2012. Relative bioavailability of arsenic and lead in the NIST 2710a soil standard. SRC TR-09-0951. https://www.epa.gov/superfund/soil-bioavailability-superfundsites-guidance#lead
  • Casteel, S. W., C., . P. Weis, G. M. Henningsen, and W. J. Brattin. 2006. Estimation of relative bioavailability of lead in soil and soil–like materials using young swine. Environ. Health Perspect. 114 (8):1162–71. doi:10.1289/ehp.8852.
  • Cave, M. R., M. Rosende, I. Mounteney, A. Gardner, and M. Miró. 2016. New Insights into the reliability of automatic dynamic methods for oral bioaccessibility testing: A case study for BGS102 soil. Environ. Sci. Technol. 50 (17):9479–86. doi:10.1021/acs.est.6b02387.
  • Chen, R. S., A. De Sherbinin, C. Ye, and G. Q. Shi. 2014. China’s soil pollution: Farms on the frontline. Science 344 (6185):691. doi:10.1126/science.344.6185.691-a.
  • Cui, Y. S., J. Fu, and X. C. Chen. 2011. Speciation and bioaccessibility of lead and cadmium in soil treated with metal-enriched Indian mustard leaves. J. Environ. Sci. 23 (4):624–32. doi:10.1016/s1001-0742(10)60456-1.
  • Denys, S., J. Caboche, K. Tack, G. Rychen, J. Wragg, M. Cave, C. Jondreville, and C. Feidt. 2012. Validation of the unified BARGE method to assess the bioaccessibility of arsenic, antimony, cadmium, and lead in soils. Environ. Sci. Technol. 46 (11):6252–60. doi:10.1021/es3006942.
  • Devoz, P. P., W. R. Gomes, M. L. De Araújo, D. L. Ribeiro, T. Pedron, L. M. G. Antunes, B. L. Batista, F. Barbosa Jr., and G. R. M. Barcelos. 2017. Lead (Pb) exposure induces disturbances in epigenetic status in workers exposed to this metal. J. Toxicol. Environ. Health A 80:1098–105. doi:10.1080/15287394.2017.1357364.
  • Dixon, S. L., J. M. Gaitens, D. E. Jacobs, W. Strauss, J. Nagaraja, T. Pivetz, J. W. Wilson, and P. J. Ashley. 2009. Exposure of U.S. children to residential dust lead, 1999− 2004:II. The contribution of lead contaminated dust to children’s blood lead levels. Environ. Health Perspect. 117 (3):468–74. doi:10.1289/ehp.11918.
  • Gilbert-Diamond, D., K. L. Cottingham, J. F. Gruber, T. Punshon, V. Sayarath, A. J. Gandolfi, E. R. Baker, B. P. Jackson, C. L. Folt, and M. R. Karagas. 2011. Rice consumption contributes to arsenic exposure in US women. Proc. Natl. Acad. Sci. U. S. A. 108 (51):20656–60. doi:10.1073/pnas.1109127108.
  • Huang, S. Y., H. Hu, B. N. Sánchez, K. E. Peterson, A. S. Ettinger, H. Lamadrid-Figueroa, L. Schnaas, A. Mercado-García, R. O. Wright, N. Basu, et al. 2016. Childhood blood lead levels and symptoms of attention deficit hyperactivity disorder (ADHD): A cross-sectional study of Mexican children. Environ. Health Perspect. 124:868–74. doi:10.1289/ehp.1510067.
  • Juhasz, A. L., P. Herde, C. Herde, J. Boland, and E. Smith. 2014. Validation of the predictive capabilities of the Sbrc-G in vitro assay for estimating arsenic relative bioavailability in contaminated soils. Environ. Sci. Technol. 48 (21):12962–69. doi:10.1021/es503695g.
  • Juhasz, A. L., J. Weber, R. Naidu, D. Gancarz, A. Rofe, D. Todor, and E. Smith. 2010. Determination of cadmium relative bioavailability in contaminated soils and its prediction using in vitro methodologies. Environ. Sci. Technol. 44 (13):5240–47. doi:10.1021/es1006516.
  • Larson, C. 2014. China gets serious about its pollutant-laden soil. Science 343 (6178):1415–16. doi:10.1126/science.343.6178.1415.
  • Li, H. B., X. Q. Chen, J. Y. Wang, M. Y. Li, D. Zhao, X. S. Luo, A. L. Juhasz, and L. Q. Ma. 2019a. Antagonistic interactions between arsenic, lead, and cadmium in the mouse gastrointestinal tract and their influences on metal relative bioavailability in contaminated soils. Environ. Sci. Technol. 53 (24):14264–72. doi:10.1021/acs.est.9b03656.
  • Li, H. B., M. Y. Li, D. Zhao, J. Li, S. W. Li, A. L. Juhasz, N. T. Basta, Y. M. Luo, and L. Q. Ma. 2019b. Oral bioavailability of As, Pb, and Cd in contaminated soils, dust, and foods based on animal bioassays: A review. Environ. Sci. Technol. 53 (18):10545–59. doi:10.1021/acs.est.9b03567.
  • Li, H. B., M. Y. Li, D. Zhao, Y. G. Zhu, J. Li, A. L. Juhasz, X. Y. Cui, J. Luo, and L. Q. Ma. 2018. Food influence on lead relative bioavailability in contaminated soils: Mechanisms and health implications. J. Hazard. Mater. 358:427–33. doi:10.1016/j.jhazmat.2018.06.034.
  • Li, H. B., D. Zhao, J. Li, S. W. Li, N. Wang, A. L. Juhasz, Y. G. Zhu, and L. Q. Ma. 2016a. Using the SBRC assay to predict lead relative bioavailability in urban soils: Contaminant source and correlation model. Environ. Sci. Technol. 50 (10):4989–96. doi:10.1021/acs.est.6b00480.
  • Li, J., C. Li, H. J. Sun, A. L. Juhasz, J. Luo, H. B. Li, and L. Q. Ma. 2016b. Arsenic relative bioavailability in contaminated soils: Comparison of animal models, dosing schemes, and biological end points. Environ. Sci. Technol. 50 (1):453–61. doi:10.1021/acs.est.5b04552.
  • Li, S. W., M. Y. Li, H. J. Sun, H. B. Li, and L. Q. Ma. 2020. Lead bioavailability in different fractions of mining- and smelting-contaminated soils based on a sequential extraction and mouse kidney model. Environ. Pollut. 262:114253. doi:10.1016/j.envpol.2020.114253.
  • Li, S. W., X. Liu, H. J. Sun, M. Y. Li, D. Zhao, J. Luo, H. B. Li, and L. Q. Ma. 2017a. Effect of phosphate amendment on relative bioavailability and bioaccessibility of lead and arsenic in contaminated soils. J. Hazard. Mater. 339:256–63. doi:10.1016/j.jhazmat.2017.06.040.
  • Li, S. W., H. J. Sun, G. Wang, X. Y. Cui, A. L. Juhasz, H. B. Li, and L. Q. Ma. 2017b. Lead relative bioavailability in soils based on different endpoints of a mouse model. J. Hazard. Mater. 326:94–100. doi:10.1016/j.jhazmat.2016.12.023.
  • Liu, L. H., Y. Zhang, Z. J. Yun, B. He, and G. B. Jiang. 2016. Estimation of bioaccessibility and potential human health risk of mercury in Chinese patent medicines. J. Environ. Sci. 39:37–44. doi:10.1016/j.jes.2015.10.010.
  • Liu, Y. L., C. Wen, and X. J. Liu. 2013. China’s food security soiled by contamination. Science 339 (6126):1382–83. doi:10.1126/science.339.6126.1382-b.
  • Martinez-Finley, E. J., S. Chakraborty, S. J. B. Fretham, and M. Aschner. 2012. Cellular transport and homeostasis of essential and nonessential metals. Metallomics 4 (7):593–605. doi:10.1039/c2mt00185c.
  • Mielke, H. W., C. R. Gonzales, E. T. Powell, M. A. S. Laidlaw, K. J. Berry, P. W. Mielke, and S. P. Egendorf. 2019. The concurrent decline of soil lead and children’s blood lead in New Orleans. Proc. Natl. Acad. Sci. U.S.A. 116 (44):22058–64. doi:10.1073/pnas.1906092116.
  • Oberoi, S., B. Devleesschauwer, H. J. Gibb, and A. Barchowsky. 2019. Global burden of cancer and coronary heart disease resulting from dietary exposure to arsenic, 2015. Environ. Res. 171:185–92. doi:10.1016/j.envres.2019.01.025.
  • Ranft, U., T. Delschen, M. Machtolf, D. Sugiri, and M. Wilhelm. 2008. Lead concentration in the blood of children and its association with lead in soil and ambient air—trends between 1983 and 2000 in Duisburg. J. Toxicol. Environ. Health A 71 (11–12):710–15. doi:10.1080/15287390801985117.
  • Rimbaud, D., M. Restrepo, A. Louison, R. Boukhari, V. Ardillon, G. Carles, V. Lambert, and A. Jolivet. 2017. Blood lead levels and risk factors for lead exposure among pregnant women in western French Guiana: The role of manioc consumption. J. Toxicol. Environ. Health A 80 (6):382–93. doi:10.1080/15287394.2017.1331490.
  • Rodríguez-Lado, L., G. F. Sun, M. Berg, Q. Zhang, H. B. Xue, H. M. Zheng, and C. A. Johnson. 2013. Groundwater arsenic contamination throughout China. Science 341 (6148):866–68. doi:10.1126/science.1237484.
  • Scheckel, K. G., R. L. Chaney, N. T. Basta, and J. A. Ryan. 2009. Advances in assessing bioavailability of metal(loid)s in contaminated soils. Adv. Agron. 104:1–52. doi:10.1016/S0065-2113(09)04001-2.
  • Scheckel, K. G., G. L. Diamond, M. F. Burgess, J. M. Klotzbach, M. Maddaloni, B. W. Miller, C. R. Partridge, and S. M. Serda. 2013. Amending soils with phosphate as means to mitigate soil lead hazard: A critical review of the state of the science. J. Toxicol. Environ. Health B 16 (6):337–80. doi:10.1080/10937404.2013.825216.
  • Serrazina, D. C., V. L. De Andrade, M. Cota, M. L. Mateus, M. Aschner, and A. P. M. Dos Santos. 2018. Biomarkers of exposure and effect in a working population exposed to lead, manganese and arsenic. J. Toxicol. Environ. Health A 81 (19):983–97. doi:10.1080/15287394.2018.1509408.
  • Smith, E., I. M. Kempson, A. L. Juhasz, J. Weber, A. Rofe, D. Gancarz, R. Naidu, R. G. McLaren, and M. Gräfe. 2011. In vivo–in vitro and XANES spectroscopy assessments of lead bioavailability in contaminated periurban soils. Environ. Sci. Technol. 45 (14):6145–52. doi:10.1021/es200653k.
  • Sowers, T. D., C. M. Nelson, G. L. Diamond, M. D. Blackmon, M. L. Jerden, A. M. Kirby, M. R. Noerpel, K. G. Scheckel, D. J. Thomas, and K. D. Bradham. 2021. High lead bioavailability of indoor dust contaminated with paint lead species. Environ. Sci. Technol. 55 (1):402–11. doi:10.1021/acs.est.0c06908.
  • Tagne-Fotso, R., A. Leroyer, M. Howsam, B. Dehon, C. Richeval, Members of Health Examination Centres of Nord-Pas-de-Calais region network, and C. Nisse. 2016. Current sources of lead exposure and their relative contributions to the blood lead levels in the general adult population of Northern France: The IMEPOGE Study, 2008–2010. J. Toxicol. Environ. Health A 79 (6):245–65. doi:10.1080/15287394.2016.1149131.
  • USEPA. 1996. U.S. EPA. Method 3050B: Acid Digestion of Sediments, Sludges, and Soils. http://www.epa.gov/wastes/hazard/testmethods/sw846/pdfs/3050b.pdf
  • Whitacre, S., N. Basta, B. Stevens, V. Hanley, R. Anderson, and K. Scheckel. 2017. Modification of an existing in vitro method to predict relative bioavailable arsenic in soils. Chemosphere 180:545–52. doi:10.1016/j.chemosphere.2017.03.134.
  • Wu, Z., X. B. Feng, P. Li, C. J. Lin, G. L. Qiu, X. Wang, X. F. Zhao, and H. Dong. 2018. Comparison of in vitro digestion methods for determining bioaccessibility of Hg in rice of China. J. Environ. Sci. 68:185–93. doi:10.1016/j.jes.2017.10.008.
  • Yang, K., J. Im, S. Jeong, and K. Nam. 2015. Determination of human health risk incorporating experimentally derived site-specific bioaccessibility of arsenic at an old abandoned smelter site. Environ. Res. 137:78–84. doi:10.1016/j.envres.2014.11.019.
  • Yu, Y. X., Y. P. Pang, X. Y. Zhang, C. Li, Z. Q. Yu, and J. M. Fu. 2011. Optimization of an in vitro method to measure the bioaccessibility of polybrominated diphenyl ethers in dust using response surface methodology. J. Environ. Sci. 23:1738–46. doi:10.1016/s1001-0742(10)60571-2.
  • Zahran, S., M. A. S. Laidlaw, S. P. McElmurry, G. M. Filippelli, and M. Taylor. 2013. Linking source and effect: Resuspended soil lead, air lead, and children’s blood lead levels in Detroit, Michigan. Environ. Sci. Technol. 55 (6):402–11. doi:10.1021/acs.est.0c06908.
  • Zartarian, V., J. P. Xue, R. Tornero-Velez, and J. Brown. 2017. Children’s lead exposure: A multimedia modeling analysis to guide public health decision-making. Environ. Health Perspect. 125 (9):097009. doi:10.1289/EHP1605.
  • Zhao, D., R. Y. Liu, P. Xiang, A. L. Juhasz, L. Huang, J. Luo, H. B. Li, and L. Q. Ma. 2017. Applying cadmium relative bioavailability to assess dietary intake from rice to predict cadmium urinary excretion in nonsmokers. Environ. Sci. Technol. 51 (12):6756–64. doi:10.1021/acs.est.7b00940.
  • Zhao, D., J. Y. Wang, N. Tang, D. X. Yin, J. Luo, A. L. Juhasz, P. Xiang, H. B. Li, and L. Q. Ma. 2018. Coupling bioavailability and stable isotope ratio to discern dietary and non-dietary contribution of metal exposure to residents in mining-impacted areas. Environ. Int. 120:563–71. doi:10.1016/j.envint.2018.08.023.
  • Zhao, F. J., Y. B. Ma, Y. G. Zhu, Z. Tang, and S. P. McGrath. 2015. Soil contamination in China: Current status and mitigation strategies. Environ. Sci. Technol. 49 (2):750–59. doi:10.1021/es5047099.
  • Zheng, Y. 2020. Global solutions to a silent poison. Science 368 (6493):818–19. doi:10.1126/science.abb9746.
  • Zhu, X., M. Y. Li, X. Q. Chen, J. Y. Wang, L. Z. Li, C. Tu, Y. M. Luo, H. B. Li, and L. Q. Ma. 2019. As, Cd, and Pb relative bioavailability in contaminated soils: Coupling mouse bioassay with UBM assay. Environ. Int. 130:104875. doi:10.1016/j.envint.2019.05.069.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.