422
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Zebrafish irritant responses to wildland fire-related biomass smoke are influenced by fuel type, combustion phase, and byproduct chemistry

, , ORCID Icon, , , , , ORCID Icon & show all

References

  • Bai, N., and S. F. Van Eeden. 2013. Systemic and vascular effects of circulating diesel exhaust particulate matter. Inhal. Toxicol 25 (13):725–34. doi:10.3109/08958378.2013.844749.
  • Baulig, A., M. Garlatti, V. Bonvallot, A. Marchand, R. Barouki, F. Marano, and A. Baeza-Squiban. 2003. Involvement of reactive oxygen species in the metabolic pathways triggered by diesel exhaust particles in human airway epithelial cells. Am. J. Physiol. - Lung Cell. Mol. Physiol. 285:L671–L679. doi:10.1152/ajplung.00419.2002.
  • Bølling, A. K., A. I. Totlandsdal, G. Sallsten, A. Braun, R. Westerholm, C. Bergvall, J. Boman, H. J. Dahlman, M. Sehlstedt, F. Cassee, et al. 2012. Wood smoke particles from different combustion phases induce similar pro-inflammatory effects in a co-culture of monocyte and pneumocyte cell lines. Part. Fibre Toxicol. 9 (1):1–15. doi:10.1186/1743-8977-9-45.
  • Burke, M., A. Driscoll, S. Heft-Neal, J. Xue, J. Burney, and M. Wara. 2019. The changing risk and burden of wildfire in the U.S. Nat Bureau Economic Res (NBER) Work. Pap. 118:1–6.
  • Cochard, M., F. Ledoux, and Y. Landkocz. 2020. Atmospheric fine particulate matter and epithelial mesenchymal transition in pulmonary cells: State of the art and critical review of the in vitro studies. J Toxicol Environ Health B 23 (7–8):293–318. doi:10.1080/10937404.2020.1816238.
  • Farraj, A. K., M. S. Hazari, N. Haykal-Coates, C. Lamb, D. W. Winsett, Y. Ge, A. D. Ledbetter, A. P. Carll, M. Bruno, A. Ghio, et al. 2011. ST depression, arrhythmia, vagal dominance, and reduced cardiac micro-RNA in particulate-exposed rats. Am. J. Respir. Cell Mol. Biol 44 (2):185–96. doi:10.1165/rcmb.2009-0456OC.
  • Farraj, A. K., N. Haykal-Coates, D. W. Winsett, M. I. Gilmour, C. King, Q. T. Krantz, J. Richards, and M. S. Hazari. 2015. Comparative electrocardiographic, autonomic and systemic inflammatory responses to soy biodiesel and petroleum diesel emissions in rats. Inhal. Toxicol 27 (11):564–75. doi:10.3109/08958378.2015.1057884.
  • Filep, Á., G. H. Fodor, F. Kun-Szabó, L. Tiszlavicz, Z. Rázga, G. Bozsó, Z. Bozóki, G. Szabó, and F. Peták. 2016. Exposure to urban PM1 in rats: Development of bronchial inflammation and airway hyperresponsiveness. Respir. Res 17 (1):1–11. doi:10.1186/s12931-016-0332-9.
  • Gavett, S. H., C. E. Wood, M. A. Williams, J. M. Cyphert, E. H. Boykin, M. J. Daniels, L. B. Copeland, C. King, T. Q. Krantz, J. H. Richards, et al. 2015. Soy biodiesel emissions have reduced inflammatory effects compared to diesel emissions in healthy and allergic mice. Inhalation Toxicology 27 (11):533–44. doi:10.3109/08958378.2015.1054966.
  • Gunnarsson, L., A. Jauhiainen, E. Kristiansson, O. Nerman, and D. G. Larsson. 2008. Evolutionary conservation of human drug targets in organisms used for environmental risk assessments. Environ. Sci. Technol. 42 (15):5807–13. doi:10.1021/es8005173.
  • Hargrove, M. M., Y. H. Kim, C. King, C. E. Wood, M. I. Gilmour, J. A. Dye, and S. H. Gavett. 2019. Smoldering and flaming biomass wood smoke inhibit respiratory responses in mice. Inhal. Toxicol 31 (6):236–47. doi:10.1080/08958378.2019.1654046.
  • Hazari, M. S., N. Haykal-Coates, D. W. Winsett, C. King, Q. T. Krantz, M. I. Gilmour, and A. K. Farraj. 2015. The effects of B0, B20, and B100 soy biodiesel exhaust on aconitine-induced cardiac arrhythmia in spontaneously hypertensive rats. Inhal. Toxicol 27 (11):557–63. doi:10.3109/08958378.2015.1054967.
  • Hime, N. J., G. B. Marks, and C. T. Cowie. 2018. A comparison of the health effects of ambient particulate matter air pollution from five emission sources. Int. J. Environ. Res. Public Health 15 (6):1–24. doi:10.3390/ijerph15061206.
  • Jolly, W. M., M. A. Cochrane, P. H. Freeborn, Z. A. Holden, T. J. Brown, G. J. Williamson, and D. M. Bowman. 2015. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 6 (1):1–11. doi:10.1038/ncomms8537.
  • Kim, Y. H., C. King, T. Krantz, M. M. Hargrove, I. J. George, J. McGee, L. Copeland, M. D. Hays, M. S. Landis, M. Higuchi, et al. 2019. The role of fuel type and combustion phase on the toxicity of biomass smoke following inhalation exposure in mice. Arch. Toxicol. 93 (6):1501–13. doi:10.1007/s00204-019-02450-5.
  • Kim, Y. H., S. H. Warren, Q. T. Krantz, C. King, R. Jaskot, W. T. Preston, B. J. George, M. D. Hays, M. S. Landis, M. Higuchi, et al. 2018. Mutagenicity and lung toxicity of smoldering vs. flaming emissions from various biomass fuels: Implications for health effects from wildland fires. Environ. Health Perspect. 126 (1):017011. doi:10.1289/EHP2200.
  • Kroll, F., G. T. Powell, M. Ghosh, G. Gestri, P. Antinucci, T. J. Hearn, H. Tunbak, S. Lim, H. W. Dennis, J. M. Fernandez, et al. 2021. A simple and effective F0 knockout method for rapid screening of behaviour and other complex phenotypes. eLife 10:e59683. doi:10.7554/eLife.59683.
  • Kühnert, A., C. Vogs, R. Altenburger, and E. Küster. 2013. The internal concentration of organic substances in fish embryos-A toxicokinetic approach. Environ. Toxicol. Chem 32 (8):1819–27. doi:10.1002/etc.2239.
  • Lim, S. S., T. Vos, A. D. Flaxman, G. Danaei, K. Shibuya, H. Adair-Rohani, M. Amann, H. R. Anderson, K. G. Andrews, M. Aryee, et al. 2012. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: A systematic analysis for the global burden of disease study 2010. Lancet 380:2224–60.
  • Liu, J. C., A. Wilson, L. J. Mickley, F. Dominici, K. Ebisu, Y. Wang, M. P. Sulprizio, R. D. Peng, X. Yue, J. Y. Son, et al. 2017. Wildfire-specific fine particulate matter and risk of hospital admissions in urban and rural counties. Epidemiology 28 (1):77–85. doi:10.1097/EDE.0000000000000556.
  • Lyu, Y., S. Su, B. Wang, X. Zhu, X. Wang, E. Y. Zeng, B. Xing, and S. Tao. 2018. Seasonal and spatial variations in the chemical components and the cellular effects of particulate matter collected in Northern China. Sci. Total Environ. 627:1627–37. doi:10.1016/j.scitotenv.2018.01.224.
  • Martin, B. L., L. C. Thompson, Y. H. Kim, C. King, S. Snow, M. Schladweiler, N. Haykal-Coates, I. George, M. I. Gilmour, U. P. Kodavanti, et al. 2020. Peat smoke inhalation alters blood pressure, baroreflex sensitivity, and cardiac arrhythmia risk in rats. J. Toxicol. Environ. Health Part A 83 (23–24):748–63. doi:10.1080/15287394.2020.1826375.
  • McMohan, C. K., and S. N. Tsoukalas. 1978. Polynuclear aromatic hydrocarbons in forest fire smoke. In Carcinogenesis, 61–73.
  • Mutlu, E., S. H. Warren, P. P. Matthews, C. King, W. P. Linak, I. M. Kooter, J. E. Schmid, J. A. Ross, M. I. Gilmour, and D. M. Demarini. 2013. Bioassay-directed fractionation and sub-fractionation for mutagenicity and chemical analysis of diesel exhaust particles. Environ. Mol. Mutagen 54 (9):719–36. doi:10.1002/em.21812.
  • Mutlu, E., S. H. Warren, P. P. Matthews, J. E. Schmid, I. M. Kooter, W. P. Linak, M. Ian Gilmour, and D. M. DeMarini. 2015. Health effects of soy-biodiesel emissions: Bioassay-directed fractionation for mutagenicity. Inhal. Toxicol 27 (11):597–612. doi:10.3109/08958378.2015.1091054.
  • Niu, X., T. Jones, K. Bérubé, H. C. Chuang, J. Sun, and K. F. Ho. 2021. The oxidative capacity of indoor source combustion derived particulate matter and resulting respiratory toxicity. Sci. Total Environ. 767:144391. doi:10.1016/j.scitotenv.2020.144391.
  • Owe, H., K. Clark, M. D. Torroja, C. F. Torrance, J. Berthelot, C. Muffato, M. Collins, J. E. Humphray, L. McLaren, K. Matthews, et al. 2014. The zebrafish reference genome sequence and its relationship to the human genome. Nature 505 (7482):248. doi:10.1038/nature12813.
  • Park, M., H. S. Joo, K. Lee, M. Jang, S. D. Kim, I. Kim, L. Borlaza, H. Lim, H. Shin, K. H. Chung, et al. 2018. Differential toxicities of fine particulate matters from various sources. Sci. Rep. 8 (1):1–11. doi:10.1038/s41598-018-35398-0.
  • Prober, D. A., S. Zimmerman, B. R. Myers, B. M. McDermott Jr, S. H. Kim, S. Caron, J. Rihel, L. Solnica-Krezel, D. Julius, A. J. Hudspeth, et al. 2008. Zebrafish TRPA1 channels are required for chemosensation but not for thermosensation or mechanosensory hair cell function. J. Neurosci 28 (40):10102–10. doi:10.1523/JNEUROSCI.2740-08.2008.
  • Samet, J. M., A. Rappold, D. Graff, W. E. Cascio, J. H. Berntsen, Y. C. Huang, M. Herbst, M. Bassett, T. Montilla, M. J. Hazucha, et al. 2009. Concentrated ambient ultrafine particle exposure induces cardiac changes in young healthy volunteers. Am. J. Respir. Crit. Care Med. 179 (11):1034–42. doi:10.1164/rccm.200807-1043OC.
  • Shkirkova, K., K. Lamorie-Foote, M. Connor, A. Patel, G. Barisano, H. Baertsch, Q. Liu, T. E. Morgan, C. Sioutas, and W. J. Mack. 2020. Effects of ambient particulate matter on vascular tissue: A review. J Toxicol Environ Health B 23 (7–8):319–50. doi:10.1080/10937404.2020.1822971.
  • Shvedova, A. A., N. Yanamala, A. R. Murray, E. R. Kisin, T. Khaliullin, M. K. Hatfield, A. V. Tkach, Q. T. Krantz, D. Nash, C. King, et al. 2013. Oxidative stress, inflammatory biomarkers, and toxicity in mouse lung and liver after inhalation exposure to 100% biodiesel or petroleum diesel emissions. J Toxicol Environ Health 76 (15):907–21. doi:10.1080/15287394.2013.825217.
  • Stevens, J. S., S. Padilla, D. M. DeMarini, D. L. Hunter, W. K. Martin, L. C. Thompson, M. I. Gilmour, M. S. Hazari, and A. K. Farraj. 2018. Zebrafish locomotor responses reveal irritant effects of fine particulate matter extracts and a role for TRPA1. Toxicol. Sci 161 (2):290–99. doi:10.1093/toxsci/kfx217.
  • Sussan, T. E., V. Ingole, J. H. Kim, S. McCormick, J. Negherbon, J. Fallica, J. Akulian, L. Yarmus, D. Feller-Kopman, M. Wills-Karp, et al. 2014. Source of biomass cooking fuel determines pulmonary response to household air pollution. Am. J. Respir. Cell Mol. Biol 50 (3):538–48. doi:10.1165/rcmb.2013-0201OC.
  • Trenberth, K. E. 2011. Changes in precipitation with climate change. Clim. Res. 47 (1):123–38. doi:10.3354/cr00953.
  • Urbanski, S. P., W. M. Hao, and S. Baker. 2009. Chemical composition of wildland fire emissions. In Developments in Environmental Science, ed.. A. Bytnerowicz, M. Arbaugh, A. Riebau, and C. Andersen, 79–107. vol. ume 8, Wildland fires and air pollution The Netherlands: Elsevier.
  • Urbanski, S. P. 2013. Combustion efficiency and emission factors for wildfire-season fires in mixed conifer forests of the northern Rocky Mountains, US. Atmos. Chem. Phys 13 (14):7241–62. doi:10.5194/acp-13-7241-2013.
  • Wellenius, G. A., P. H. Saldiva, J. R. Batalha, G. G. Krishna Murthy, B. A. Coull, R. L. Verrier, and J. J. Godleski. 2002. Electrocardiographic changes during exposure to residual oil fly ash (ROFA) particles in a rat model of myocardial infarction. Toxicol. Sci 66 (2):327–35. doi:10.1093/toxsci/66.2.327.
  • Westerfield, M. 2007. The Zebrafish Book. A Guide for the Laboratory Use of Zebrafish (Danio rerio). 5th Edition ed. Eugene: Univ. Oregon Press.
  • Westerling, A. L., H. G. Hidalgo, D. R. Cayan, and T. W. Swetnam. 2006. Warming and earlier spring increase Western U.S. forest wildfire activity. Science 313 (5789):940–43. doi:10.1126/science.1128834.
  • Wettstein, Z. S., S. Hoshiko, J. Fahimi, R. J. Harrison, W. E. Cascio, and A. G. Rappold. 2018. Cardiovascular and cerebrovascular emergency department visits associated with wildfire smoke exposure in California in 2015. J. Am. Heart Assoc. 7 (8):e007492. doi:10.1161/JAHA.117.007492.
  • Xu, Y., L. Barregard, J. Nielsen, A. Gudmundsson, A. Wierzbicka, A. Axmon, B. A. Jönsson, M. Kåredal, and M. Albin. 2013. Effects of diesel exposure on lung function and inflammation biomarkers from airway and peripheral blood of healthy volunteers in a chamber study. Part. Fibre Toxicol. 10 (1):1–9. doi:10.1186/1743-8977-10-60.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.