250
Views
2
CrossRef citations to date
0
Altmetric
Research Article

An in vitro study on the differentiated metabolic mechanism of chloroquine-resistant Plasmodium falciparum using high-resolution metabolomics

, , , &

References

  • Atamna, H., and H. Ginsburg. 1993. Origin of reactive oxygen species in erythrocytes infected with Plasmodium falciparum. Mol. Biochem. Parasitol. 61:231–41. doi:10.1016/0166-6851(93)90069-a.
  • Atamna, H., and H. Ginsburg. 1995. Heme degradation in the presence of glutathione. A proposed mechanism to account for the high levels of non-heme iron found in the membranes of hemoglobinopathic red blood cells. J. Biol. Chem. 270:24876–83. doi:10.1074/jbc.270.42.24876.
  • Binder, R. K., S. Borrmann, A. A. Adegnika, M. A. Missinou, P. G. Kremsner, and J. F. Kun. 2002. Polymorphisms in the parasite genes for pfcrt and pfmdr-1 as molecular markers for chloroquine resistance in Plasmodium falciparum in Lambarene, Gabon. Parasitol. Res. 88:475–76. doi:10.1007/s00436-001-0546-7.
  • Bonvallot, N., M. Tremblay-Franco, C. Chevrier, C. Canlet, L. Debrauwer, J. Cravedi, and S. Cordier. 2014. Potential input from metabolomics for exploring and understanding the links between environment and health. J. Toxicol. Environ. Health B 17:21–44. doi:10.1080/10937404.2013.860318.
  • Cassera, M. B., K. Z. Hazleton, P. M. Riegelhaupt, E. F. Merino, M. Luo, M. H. Akabas, and V. L. Schramm. 2008. Erythrocytic adenosine monophosphate as an alternative purine source in Plasmodium falciparum. J. Biol. Chem. 283:32889–99. doi:10.1074/jbc.M804497200.
  • Chen, J. H., J. D. Lim, E. H. Sohn, Y. S. Choi, and E. T. Han. 2009. Growth-inhibitory effect of a fucoidan from brown seaweed Undaria pinnatifida on Plasmodium parasites. Parasitol. Res. 104:245–50. doi:10.1007/s00436-008-1182-2.
  • Chong, J., D. S. Wishart, and J. Xia. 2019. Using MetaboAnalyst 4.0 for comprehensive and integrative metabolomics data analysis. Curr. Protoc. Bioinformatics 68:e86. doi:10.1002/cpbi.86.
  • Cowman, A. F., J. Healer, D. Marapana, and K. Marsh. 2016. Malaria: Biology and disease. Cell 167:610–24. doi:10.1016/j.cell.2016.07.055.
  • D’Alessandro, A., T. Nemkov, M. Kelher, F. B. West, R. K. Schwindt, A. Banerjee, E. E. Moore, C. C. Silliman, and K. C. Hansen. 2015. Routine storage of red blood cell (RBC) units in additive solution-3. A comprehensive investigation of the RBC metabolome. Transfusion 55:1155–68. doi:10.1111/trf.12975.
  • Dorsey, G., M. R. Kamya, A. Singh, and P. J. Rosenthal. 2001. Polymorphisms in the Plasmodium falciparum pfcrt and pfmdr-1 genes and clinical response to chloroquine in Kampala, Uganda. J. Infect. Dis. 183:1417–20. doi:10.1086/319865.
  • Guijas, C., J. R. Montenegro-Burke, X. Domingo-Almenara, A. Palermo, B. Warth, G. Hermann, G. Koellensperger, T. Huan, W. Uritboonthai, A. E. Aisporna. 2018. METLIN: A technology platform for identifying knowns and unknowns. Anal. Chem. 90:3156–64. doi:10.1128/mcb.14.4.2419.
  • Helmuth H. G., van E. S., Karcz, S. Chu, F., Cowman, A. F., Vidal, S., Gros, P., Schurr. 1994. Expression of the Plasmodial pfmdr1 gene in mammalian cells is associated with increased susceptibility to chloroquine. Mol. Cell Biol. 14:2419–2428. doi:10.1128/mcb.14.4.2419.
  • Kanehisa, M. 2002. The KEGG database. Novartis Found Symp. 247:91–101; Discussion 101-103.
  • Kanehisa, M., and S. Goto. 2000. KEGG: Kyoto encyclopedia of genes and genomes. Nucl. Acids Res. 28:27–30. doi:10.1093/nar/28.1.27.
  • Khan, A. Q., L. Pernaute-Lau, A. A. Khattak, S. Luijcx, B. Aydin-Schmidt, M. Hussain, T. A. Khan, F. U. Mufti, and U. Morris. 2020. Surveillance of genetic markers associated with Plasmodium falciparum resistance to artemisinin-based combination therapy in Pakistan, 2018-9. Malaria J. 19:206. doi:10.1186/s12936-020-03276-8.
  • Kumar Mishra, S., P. Singh, and S. K. Rath. 2013. Protective effect of quercetin on chloroquine-induced oxidative stress and hepatotoxicity in mice. Malaria Res. Treat. 2013:141734. doi:10.1155/2013/141734.
  • Lamour, S. D., U. Straschil, J. Saric, and M. J. Delves. 2014. Changes in metabolic phenotypes of Plasmodium falciparum in vitro cultures during gametocyte development. Malaria J. 13:468. doi:10.1186/1475-2875-13-468.
  • Lee, J. D., H. Y. Kim, J. J. Park, S. Kim, K. B. Kim, K. J. Cho, S. Kim, and K.-B. Kim. 2021. Metabolomics approach to biomarkers of dry eye disease using1H-NMR in rats. J. Toxicol. Environ. Health Part A 84:313–30. doi:10.1080/15287394.2020.1867274.
  • Leopold, S. J., S. Apinan, A. Ghose, H. W. Kingston, K. A. Plewes, A. Hossain, A. K. Dutta, S. Paul, A. Barua, A. Sattar, et al.. 2019a. Amino acid derangements in adults with severe falciparum malaria. Sci. Rep. 9:6602. doi:10.1038/s41598-019-43044-6.
  • Leopold, S. J., A. Ghose, E. L. Allman, H. W. F. Kingston, A. Hossain, A. K. Dutta, K. Plewes, K. Chotivanich, N. P. J. Day, J. Tarning, et al.. 2019b. Identifying the components of acidosis in patients with severe Plasmodium falciparum malaria using metabolomics. J. Infect. Dis. 219:1766–76. doi:10.1093/infdis/jiy727.
  • Li, T., S. Glushakova, and J. Zimmerberg. 2003. A new method for culturing Plasmodium falciparum shows replication at the highest erythrocyte densities. J. Infect. Dis. 187:159–62. doi:10.1086/345876.
  • Lian, L. Y., M. Al-Helal, A. M. Roslaini, N. Fisher, P. G. Bray, S. A. Ward, and G. A. Biagini. 2009. Glycerol: An unexpected major metabolite of energy metabolism by the human malaria parasite. Malaria J. 8:38. doi:10.1186/1475-2875-8-38.
  • Loria, P., S. Miller, M. Foley, and L. Tilley. 1999. Inhibition of the peroxidative degradation of haem as the basis of action of chloroquine and other quinoline antimalarials. Biochem. J. 339( PMCID:PMC1220166):363–70. doi:10.1042/bj3390363.
  • Lucchi, N. W., R. Abdallah, J. Louzada, V. Udhayakumar, and J. Oliveira-Ferreira. 2020. Molecular surveillance for polymorphisms associated with artemisinin-based combination therapy resistance in Plasmodium falciparum isolates collected in the State of Roraima, Brazil. Am. J. Trop. Med. Hyg. 102:310–12. doi:10.4269/ajtmh.19-0749.
  • Martin, R. E., R. V. Marchetti, A. I. Cowan, S. M. Howitt, S. Broer, and K. Kirk. 2009. Chloroquine transport via the malaria parasite’s chloroquine resistance transporter. Science 325:1680–82. doi:10.1126/science.1175667.
  • Miller, L. H., H. C. Ackerman, X. Z. Su, and T. E. Wellems. 2013. Malaria biology and disease pathogenesis: Insights for new treatments. Nat. Med. 19:156–67. doi:10.1038/nm.3073.
  • Na, J. H., A. Khan, J. K. Kim, A. Wadood, Y. L. Choe, D. L. Walker, D. P. Jones, C. S. Lim, and Y. J. Park. 2019. Discovery of metabolic alterations in the serum of patients infected with Plasmodium spp. by high-resolution metabolomics. Metabolomics 16:9. doi:10.1007/s11306-019-1630-2.
  • Nam, J. H., J. Y. Kim, W. S. Jang, C. S. Lim, and C. S. Lim. 2019. Continuous erythrocyte removal and leukocyte separation from whole blood based on vicoelastic cell focusing and the margination phenomenon. J. Chromatogr. A 1595:230–39. doi:10.1016/j.chroma.2019.02.019.
  • Nyunt, M. H., B. Wang, K. M. Aye, K. H. Aye, J. H. Han, S. Y. Lee, K. T. Han, Y. Htut, and E. T. Han. 2017. Molecular surveillance of artemisinin resistance falciparum malaria among migrant goldmine workers in Myanmar. Malaria J. 16:1–8. doi:10.1186/s12936-017-1753-8.
  • Ogata, H., S. Goto, W. Fujibuchi, and M. Kanehisa. 1998. Computation with the KEGG pathway database. Biosystems 47:119–28. doi:10.1016/s0303-2647(98)00017-3.
  • Ouji, M., J. M. Augereau, L. Paloque, and F. Benoit-Vical. 2018. Plasmodium falciparum resistance to artemisinin-based combination therapies: A sword of Damocles in the path toward malaria elimination. Parasite 25:24. doi:10.1051/parasite/2018021.
  • Oyelade, J., I. Isewon, S. Rotimi, and I. Okunoren. 2016. Modeling of the glycolysis pathway in Plasmodium falciparum using Petri nets. Bioinform. Biol. Insights 10:49–57. doi:10.4137/BBI.S37296.
  • Park, Y. J., Y. P. Shi, C. A. D. Medriano, Y. H. Jeon, K. Uppal, K. Uppal, S. L. Jones, L. Slutsker, and D. P. Jones. 2015. High-resolution metabolomics to discover potential parasite-specific biomarkers in a Plasmodium falciparum erythrocytic stage culture system. Malaria J. 14:122. doi:10.1186/s12936-015-0651-1.
  • Parvazi, S., S. Sadeghi, M. Azadi, M. Mohammadi, M. Arjmand, F. Vahabi, S. Sadeghzadeh, and Z. Zamani. 2016. The Effect of aqueous extract of cinnamon on the metabolome of Plasmodium falciparum using (1)HNMR spectroscopy. J. Trop. Med. 2016:3174841. doi:10.1155/2016/3174841.
  • Percario, S., D. R. Moreira, B. A. Gomes, M. E. Ferreira, A. C. Goncalves, P. S. Laurindo, T. C. Vilhena, M. F. Dolabela, and M. D. Green. 2012. Oxidative stress in malaria. Int J Mol Sci 13:16346–72. doi:10.3390/ijms131216346.
  • Putri, S. P., Y. Nakayama, F. Matsuda, T. Uchikata, S. Kobayashi, A. Matsubara, and E. Fukusaki. 2013. Current metabolomics: Practical applications. J. Biosci. Bioeng. 115:579–89. doi:10.1016/j.jbiosc.2012.12.007.
  • Recuenco, F. C., K. Kobayashi, A. Ishiwa, Y. Enomoto-Rogers, N. G. Fundador, T. Sugi, H. Takemae, T. Iwanaga, F. Murakoshi, H. Gong, et al.. 2014. Gellan sulfate inhibits Plasmodium falciparum growth and invasion of red blood cells in vitro. Sci. Rep. 4:4723. doi:10.1038/srep04723.
  • Reiling, S. J., G. Krohne, O. Friedrich, T. G. Geary, and P. Rohrbach. 2018. Chloroquine exposure triggers distinct cellular responses in sensitive versus resistant Plasmodium falciparum parasites. Sci. Rep. 8:11137. doi:10.1038/s41598-018-29422-6.
  • Rider, J. E., A. Hacker, C. A. Mackintosh, A. E. Pegg, P. M. Woster, and R. A. Casero Jr.. 2007. Spermine and spermidine mediate protection against oxidative damage caused by hydrogen peroxide. Amino Acids 33:231–40. doi:10.1007/s00726-007-0513-4.
  • Salinas, J. L., J. C. Kissinger, D. P. Jones, and M. R. Galinski. 2014. Metabolomics in the fight against malaria. Mem. Inst. Oswaldo Cruz 109:589–97. doi:10.1590/0074-0276140043.
  • Sana, T. R., D. B. Gordon, S. M. Fischer, S. E. Tichy, N. Kitagawa, C. Lai, W. L. Gosnell, S. P. Chang, and J. F. Turrens. 2013. Global mass spectrometry based metabolomics profiling of erythrocytes infected with Plasmodium falciparum. PLoS One 8:e60840. doi:10.1371/journal.pone.0060840.
  • Sigala, P. A., and D. E. Goldberg. 2014. The peculiarities and paradoxes of Plasmodium heme metabolism. Annu. Rev. Microbiol. 68:259–78. doi:10.1146/annurev-micro-091313-103537.
  • Skrzypek, R., and R. Callaghan. 2017. The “pushmi-pullyu” of resistance to chloroquine in malaria. Essays Biochem. 61:167–75. doi:10.1042/EBC20160060.
  • Smith, C. A., G. O’Maille, E. J. Want, C. Qin, S. A. Trauger, T. R. Brandon, D. E. Custodio, R. Abagyan, and G. Siuzdak. 2005. METLIN: A metabolite mass spectral database. Ther Drug Monit. 27:747–51. doi:10.1097/01.ftd.0000179845.53213.39.
  • Sullivan, D. J., I. Y. Gluzman, D. G. Russell, and D. E. Goldberg. 1996. On the molecular mechanism of chloroquine’s antimalarial action. Proc. Natl. Acad. Sci. USA 93 (11865–11870):11865–70. doi:10.1073/pnas.93.21.11865.
  • Trager, W., and J. B. Jensen. 1976. Human malaria parasites in continuous culture. Science 193:673–75. doi:10.1126/science.781840.
  • Uppal, K., Q. A. Soltow, F. H. Strobel, W. S. Pittard, K. M. Gernert, T. Yu, and D. P. Jones. 2013. xMSanalyzer: Automated pipeline for improved feature detection and downstream analysis of large-scale, non-targeted metabolomics data. BMC Bioinform. 14:15. doi:10.1186/1471-2105-14-15.
  • Uppal, K., D. I. Walker, and D. P. Jones. 2017. xMSannotator: An R package for network-based annotation of high-resolution metabolomics data. Anal. Chem. 89:1063–67. doi:10.1021/acs.analchem.6b01214.
  • Wishart, D. S., Y. D. Feunang, A. Marcu, A. C. Guo, K. Liang, R. Vazquez-Fresno, T. Sajed, D. Johnson, C. Li, N. Karu, et al.. 2018. HMDB 4.0: The human metabolome database for 2018. Nucl. Acids Res. 46:D608–D617. doi:10.1093/nar/gkx1089.
  • World Health Organization (WHO). 2015. Guidelines for the Treatment of Malaria. vol. 9, 3rd ed. World Health Organization.
  • World Health Organization (WHO). 2018. World malaria report. World Health Organization. 14–15.
  • Yu, T., Y. Park, J. M. Johnson, and D. P. Jones. 2009. apLCMS--adaptive processing of high-resolution LC/MS data. Bioinformatics 25:1930–36. doi:10.1093/bioinformatics/btp291.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.