250
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Protective effects and DNA repair induction of a coumarin-chalcone hybrid against genotoxicity induced by mutagens

ORCID Icon, , ORCID Icon, , ORCID Icon, ORCID Icon, , , & ORCID Icon show all

References

  • Abegão, L. M. G., F. A. Santos, R. D. Fonseca, A. L. B. S. Barreiros, M. L. Barreiros, P. B. Alves, E. V. Costa, G. B. Souza, M. A. R. C. Alencar, C. R. Mendonça, et al. 2020. Chalcone-based molecules: Experimental and theoretical studies on the two-photon absorption and molecular first hyperpolarizability. Spectrochim. Acta A Mol. Biomol. Spectrosc. 227:117772. doi:10.1016/j.saa.2019.117772.
  • Alaaeldin, R., M. Mustafa, G. E. A. Abuo-Rahma, and M. Fathy. 2022. In vitro inhibition and molecular docking of a new ciprofloxacin-chalcone against SARS-COV-2 main protease. Fundam. Clin. Pharmacol. 36 (1):160–70. doi:10.1111/FCP.12708.
  • Alaraby, M., B. Annangi, R. Marcos, and A. Hernández. 2016. Drosophila melanogaster as a suitable in vivo model to determine potential side effects of nanomaterials: A review. J. Toxico. Environ. Health B 19 (2):65–104. doi:10.1080/10937404.2016.1166466.
  • Alsafi, M. A., D. L. Hughes, and M. A. Said. 2020. First COVID-19 molecular docking with a chalcone-based compound: Synthesis, single-crystal structure and hirshfeld surface analysis study. Acta Crystallogr. C Struct. Chem. 76 (12):1043–50. doi:10.1107/S2053229620014217.
  • Api, A. M. 2001. Lack of effect of coumarin on the formation of micronuclei in an in vivo mouse micronucleus assay. Food Chem. Toxicol. 39 (8):837–41. doi:10.1016/S0278-6915(01)00024-2.
  • Araujo, J. R. S., J. G. S. Morais, C. M. Santos, K. C. A. Rocha, A. C. A. R. Fagundes, F. A. S. Filho, F. A. Martins, and P. M. Almeida. 2021. Phytochemical prospecting, isolation, and protective effect of the ethanolic extract of the leaves of Jatropha mollissima (Pohl) Baill. J. Toxicol. Environ. Health A 84 (18):743–60. doi:10.1080/15287394.2021.1938767.
  • Begum, N. A., N. Roy, R. A. Laskar, and K. Roy. 2011. Mosquito larvicidal studies of some chalcone analogues and their derived products: Structure-activity relationship analysis. Med. Chem. Res. 20 (2):184–91. doi:10.1007/s00044-010-9305-6.
  • Bhattarai, N., A. A. Kumbhar, Y. R. Pokharel, and P. N. Yadav. 2021. Anticancer potential of coumarin and its derivatives. Mini-Rev. Med. Chem. 21 (19):2996–3029. doi:10.2174/1389557521666210405160323.
  • Burmaoglu, S., S. Ozcan, S. Balcioglu, M. Gencel, S. A. A. Noma, S. Essiz, B. Ates, and O. Algul. 2019. Synthesis, biological evaluation and molecular docking studies of bis-chalcone derivatives as xanthine oxidase inhibitors and anticancer agents. Bioorg. Chem. 91:103149. doi:10.1016/j.bioorg.2019.103149.
  • Carneiro, C. C., S. C. Santos, R. S. Lino, M. T. F. Bara, B. A. Chaibub, P. R. M. Reis, D. A. Chaves. 2016. Chemopreventive effect and angiogenic activity of punicalagin isolated from leaves of Lafoensia pacari A. St.-Hil. Toxicol. Appl. Pharmacol. 310:1–8. doi:10.1016/j.taap.2016.08.015.
  • Charmforoshan, E., E. Karimi, E. Oskoueian, and M. Iranshahi. 2021. Antibacterial, antioxidant and melanogenesis inhibitory activity of auraptene, a coumarin from Ferula szowitsiana root. Nutr. Cancer 11:1–8. doi:10.1080/01635581.2021.1962922.
  • Chidambaram, S., M. A. El-Sheikh, A. H. Alfarhan, S. Radhakrishnan, and I. Akbar. 2021. Synthesis of novel coumarin analogues: Investigation of molecular docking interaction of SARS-COV-2 proteins with natural and synthetic coumarin analogues and their pharmacokinetics studies. Saudi J. Biol. Sci. 28 (1):1100–08. doi:10.1016/J.SJBS.2020.11.038.
  • CONCEA. 2016. Normativas Do Concea - Lei, Decreto, Portarias, Resoluções Normativas e Orientações Técnicas - 3a Edição. https://www.mctic.gov.br/mctic/export/sites/institucional/institucional/concea/arquivos/publicacoes/ebook-normativas.pdf.
  • Couto, N., J. Wood, and J. Barber. 2016. The role of glutathione reductase and related enzymes on cellular redox homoeostasis network. Free Radic. Biol. Med. 95:27–42. doi:10.1016/j.freeradbiomed.2016.02.028.
  • Dar, A. M., and S. Mir. 2017. Molecular docking: Approaches, types, applications and basic challenges. J. Anal. Bioanal. Tech. 8 (2):1–3. doi:10.4172/2155-9872.1000356.
  • Demir, F. T. 2022. In vivo effects of 1,4-dioxane on genotoxic parameters and behavioral alterations in Drosophila melanogaster. J. Toxicol. Environ. Health A 85 (10):414–30. doi:10.1080/15287394.2022.2027832.
  • Elliott, A. J., S. A. Scheiber, C. Thomas, and R. S. Pardini. 1992. Inhibition of glutathione reductase by flavonoids: A structure-activity study. Biochem. Pharmacol. 44 (8):1603–08. doi:10.1016/0006-2952(92)90478-2.
  • Fedato, R. P., and E. L. Maistro. 2014. Absence of genotoxic effects of the coumarin derivative 4-methylesculetin in vivo and its potential chemoprevention against doxorubicin-induced DNA damage. J. Appl. Toxicol. 34 (1):33–39. doi:10.1002/jat.2823.
  • Fernandes, A. S., J. H. Véras, L. S. Silva, S. C. Puga, E. F. L. C. Bailão, M. G. Oliveira, C. G. Cardoso, C. C. Carneiro, S. C. Santos, and L. Chen-Chen. 2022. Pedunculagin isolated from Plinia cauliflora seeds exhibits genotoxic, antigenotoxic and cytotoxic effects in bacteria and human lymphocytes. J. Toxicol. Environ. Health A 85 (9):353–63. doi:10.1080/15287394.2021.2009947.
  • Ferraz, C. A. N., S. R. Tintino, A. M. R. Teixeira, P. N. Bandeira, H. S. Santos, B. G. Cruz, C. E. S. Nogueira, T. F. Moura, R. L. S. Pereira, D. M. Sena, et al. 2020. Potentiation of antibiotic activity by chalcone (E)-1-(4′-aminophenyl)-3-(furan-2-yl)-prop-2-en-1-one against gram-positive and gram-negative MDR strains. Microb. Pathogen 148:104453. doi:10.1016/j.micpath.2020.104453.
  • Figueroa, D., M. Asaduzzaman, and F. Young. 2019. Effect of chemotherapeutics and tocopherols on MCF-7 breast adenocarcinoma and KGN ovarian carcinoma cell lines. in Vitro. Biomed Res. Int. 2019:1–13. doi:10.1155/2019/6146972.
  • Filimonov, D. A., A. A. Lagunin, T. A. Gloriozova, A. V. Rudik, D. S. Druzhilovskii, P. V. Pogodin, and V. V. Poroikov. 2014. Prediction of the biological activity spectra of organic compounds using the PASS online web resource. Chem. Heterocycl. Compd. 50 (3):444–57. doi:10.1007/s10593-014-1496-1.
  • Freitas, K. S., I. S. Squarisi, N. O. Acésio, H. D. Nicolella, S. D. Ozelin, M. R. S. Melo, A. P. P. Guissone, G. Fernandes, L. M. Silva, A. A. S. Filho, et al. 2020. Licochalcone A, a licorice flavonoid: Antioxidant, cytotoxic, genotoxic, and chemopreventive potential. J. Toxicol. Environ. Health A 83 (21–22):673–86. doi:10.1080/15287394.2020.1813228.
  • Guvenalp, Z., H. Ozbek, M. Karadayi, M. Gulluce, A. Kuruuzum-Uz, B. Salih, and O. Demirezer. 2015. Two antigenotoxic chalcone glycosides from Mentha longifolia subsp. Longifolia. Pharm. Biol. 53 (6):888–96. doi:10.3109/13880209.2014.948633.
  • Hayashi, M. 2016. The micronucleus test—most widely used in vivo genotoxicity test—. Genes. Environ. 38 (1):1–6. doi:10.1186/S41021-016-0044-X.
  • Hu, Y., Y. Shen, X. Wu, X. Tu, and G. X. Wang. 2018. Synthesis and biological evaluation of coumarin derivatives containing imidazole skeleton as potential antibacterial agents. Eur. J. Med. Chem. 143:958–69. doi:10.1016/j.ejmech.2017.11.100.
  • Iio, M., H. Kawaguchi, Y. Sakota, J. Otonari, and H. Nitahara. 1993. Effects of polyphenols, including flavonoids, on glutathione S -Transferase and glutathione reductase. Biosci. Biotechnol. Biochem. 57 (10):1678–80. doi:10.1271/bbb.57.1678.
  • Kanojia, D., and M. M. Vaidya. 2006. 4-nitroquinoline-1-oxide induced experimental oral carcinogenesis. Oral Oncol. 42 (7):655–67. doi:10.1016/j.oraloncology.2005.10.013.
  • Karplus, P. A., and G. E. Schulz. 1989. Substrate binding and catalysis by glutathione reductase as derived from refined enzyme: Substrate crystal structures at 2Å resolution. J. Mol. Biol. 210 (1):163–80. doi:10.1016/0022-2836(89)90298-2.
  • Konidala, S. K., V. Kotra, R. C. S. R. Danduga, and P. K. Kola. 2020. Coumarin-chalcone hybrids targeting insulin receptor: Design, synthesis, anti-diabetic activity, and molecular docking. Bioorg. Chem. 104:104207. doi:10.1016/j.bioorg.2020.104207.
  • Krishna, G., and M. Hayashi. 2000. In vivo rodent micronucleus assay: Protocol, conduct and data interpretation. Mutat. Res. - Fundam. Mol. Mech. Mutagen 455 (1–2):155–66. doi:10.1016/S0027-5107(00)00117-2.
  • Kumar, A., T. P. Rajmohan, and K. Ragavan. 2016. Evaluation of anti-inflammatory, antioxidant and anti-proliferative activities of halogenated chalcones. World J. Pharm. Pharm. Sci. 5:978–1001. doi:10.20959/wjpps20165-6667.
  • Langie, S. A. S., A. Azqueta, and A. R. Collins. 2015. The comet assay: Past, present, and future. Front. Genet. 6:1–3. doi:10.3389/fgene.2015.00266.
  • Ledebur, M. V., and W. Schmid. 1973. The micronucleus test methodological aspects. Mutat. Res-Fundam. Mol. Mech 19 (1):109–17. doi:10.1016/0027-5107(73)90118-8.
  • Lemes, S. R., C. R. Silva, J. H. Véras, L. Chen-Chen, R. S. Lima, C. N. Perez, M. A. M. Sousa, P. R. de Melo Reis, and N. J. da Silva Junior. 2018. Presence of antigenotoxic and anticytotoxic effects of the chalcone 1E,4E-1-(4-chlorophenyl)-5-(2,6,6-trimethylcyclohexen-1-yl)penta-1,4-dien-3-one using in vitro and in vivo assays. Drug Chem. Toxicol. 43 (4):383–90. doi:10.1080/01480545.2018.1497046.
  • Lima, D. C. S., C. R. Vale, J. H. Véras, A. Bernardes, C. N. Pérez, and L. Chen-Chen. 2017. Absence of genotoxic effects of the chalcone (E)-1-(2-hydroxyphenyl)-3-(4-methylphenyl)-prop-2-en-1-one) and its potential chemoprevention against DNA damage using in vitro and in vivo assays. PLoS One 12 (2):e0171224. doi:10.1371/journal.pone.0171224.
  • Liu, X., S. Ouyang, B. Yu, Y. Liu, K. Huang, J. Gong, S. Zheng, Z. Li, H. Li, and H. Jiang. 2010. PharmMapper server: A web server for potential drug target identification using pharmacophore mapping approach. Nucl. Acids Res. 38 (Suppl_2):W609–W614. doi:10.1093/nar/gkq300.
  • Magalhães, C. S., D. M. Almeida, H. J. C. Barbosa, and L. E. Dardenne. 2014. A dynamic niching genetic algorithm strategy for docking highly flexible ligands. Inf. Sci. 289:206–24. doi:10.1016/j.ins.2014.08.002.
  • Maistro, E. L., E. S. Marques, R. P. Fedato, F. Tolentino, C. A. C. Silva, M. S. F. Tsuboy, F. A. Resende, and E. A. Varanda. 2015. In vitro assessment of mutagenic and genotoxic effects of coumarin derivatives 6,7-dihydroxycoumarin and 4-methylesculetin. J. Toxicol. Environ. Health A 78 (2):109–18. doi:10.1080/15287394.2014.943865.
  • Maron, D. M., and B. N. Ames. 1983. Revised methods for the salmonella mutagenicity test. Mutat. Res., Sect. Environ. Mutagen. Relat. Subj. 113:173–215. doi:10.1016/0165-1161(83)90010-9.
  • Marques, E. S., D. B. Salles, and E. L. Maistro. 2015. Assessment of the genotoxic/clastogenic potential of coumarin derivative 6,7-dihydroxycoumarin (aesculetin) in multiple mouse organs. Toxicol. Rep. 2:268–74. doi:10.1016/j.toxrep.2015.01.005.
  • Maurya, A. K., and N. Mishra. 2020. In silico validation of coumarin derivatives as potential inhibitors against main protease, NSP10/NSP16-methyltransferase, phosphatase and endoribonuclease of SARS CoV-2. J. Biomol. Struct. Dyn. doi:10.1080/07391102.2020.1808075.
  • Mazzone, G., A. Galano, J. R. Alvarez-Idaboy, and N. Russo. 2016. Coumarin–chalcone hybrids as peroxyl radical scavengers: Kinetics and mechanisms. J. Chem. Inf. Model 56 (4):662–70. doi:10.1021/acs.jcim.6b00006.
  • Meng, X., H. Zhang, M. Mezei, and M. Cui. 2011. Molecular docking: A powerful approach for structure-based drug discovery. Curr. Comput.-Aided Drug Des 7 (2):146–57. doi:10.2174/157340911795677602.
  • Mortelmans, K., and E. Zeiger. 2000. The Ames salmonella/microsome mutagenicity assay. Mutat. Res. 455 (1–2):29–60. doi:10.1016/s0027-5107(00)00064-6.
  • Moya-Alvarado, G., O. Yañez, N. Morales, A. González-González, C. Areche, M. T. Núñez, A. Fierro, and O. García-Beltrán. 2021. Coumarin-chalcone hybrids as inhibitors of MAO-B: Biological activity and in silico studies. Molecules 26 (9):1–19. doi:10.3390/MOLECULES26092430.
  • Nayeli, M., H. Maribel, J. Enrique, B. Rafael, A. Margarita, F. Macrina, M. Ivan, and G. Manasés. 2020. Anti-inflammatory activity of coumarins isolated from Tagetes lucida Cav. Nat. Prod. Res. 34 (22):3244–48. doi:10.1080/14786419.2018.1553172.
  • Nejabat, M., R. Ghodsi, and F. Hadizadeh. 2022. Coumarins and quinolones as effective multiple targeted agents versus COVID-19: An in silico study. Med. Chem. 18 (2):220–37. doi:10.2174/1573406417666210208223924.
  • Niu, H., W. Wang, J. Li, Y. Lei, Y. Zhao, W. Yang, C. Zhao, B. Lin, S. Song, and S. Wang. 2017. A novel structural class of coumarin-chalcone fibrates as PPARα/γ agonists with potent antioxidant activities: Design, synthesis, biological evaluation and molecular docking studies. Eur. J. Med. Chem. 138:212–20. doi:10.1016/j.ejmech.2017.06.033.
  • OECD. 2015. Guidance document on revisions to OECD genetic toxicology - Test guidelines. https://www.oecd.org/chemicalsafety/testing/GeneticToxicologyGuidanceDocumentAug312015.pdf.
  • Olive, P. L., and J. P. Banáth. 2006. The comet assay: A method to measure DNA damage in individual cells. Nat. Protoc. 1 (1):23–29. doi:10.1038/nprot.2006.5.
  • Patel, D. S., S. M. Misenko, J. Her, and S. F. Bunting. 2017. BLM helicase regulates DNA repair by counteracting RAD51 loading at DNA double-strand break sites. J. Cell Biol 216 (11):3521–34. doi:10.1083/jcb.201703144.
  • Pérez-Cruz, F., S. Vazquez-Rodriguez, M. J. Matos, A. Herrera-Morales, F. A. Villamena, A. Das, B. Gopalakrishnan, C. Olea-Azar, L. Santana, and E. Uriarte. 2013. Synthesis and electrochemical and biological studies of novel coumarin–chalcone hybrid compounds. J. Med. Chem. 56 (15):6136–45. doi:10.1021/jm400546y.
  • Pingaew, R., A. Saekee, P. Mandi, C. Nantasenamat, S. Prachayasittikul, S. Ruchirawat, and V. Prachayasittikul. 2014. Synthesis, biological evaluation and molecular docking of novel chalcone–coumarin hybrids as anticancer and antimalarial agents. Eur. J. Med. Chem. 85:65–76. doi:10.1016/j.ejmech.2014.07.087.
  • Pires, D. E. V., T. L. Blundell, and D. B. Ascher. 2015. PkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem. 58 (9):4066–72. doi:10.1021/acs.jmedchem.5b00104.
  • Polo, E., N. Ibarra-Arellano, L. Prent-Peñaloza, A. Morales-Bayuelo, J. Henao, A. Galdámez, and M. Gutiérrez. 2019. Ultrasound-assisted synthesis of novel chalcone, heterochalcone and bis-chalcone derivatives and the evaluation of their antioxidant properties and as acetylcholinesterase inhibitors. Bioorg. Chem. 90:103034. doi:10.1016/j.bioorg.2019.103034.
  • Qin, H., Z. Zhang, R. Lekkala, H. Alsulami, and K. P. Rakesh. 2020. Chalcone hybrids as privileged scaffolds in antimalarial drug discovery: A key review. Eur. J. Med. Chem. 193:112215. doi:10.1016/j.ejmech.2020.112215.
  • Rozmer, Z., and P. Perjési. 2016. Naturally occurring chalcones and their biological activities. Phytochem. Rev. 15:87–120. doi:10.1007/s11101-014-9387-8.
  • Schmid, W. 1975. The micronucleus test. Mutat. Res. 31 (1):9–15. doi:10.1016/0165-1161(75)90058-8.
  • Sghaier, M. B., W. Bhouri, I. Bouhlel, I. Skandrani, J. Boubaker, L. Chekir-Ghedira, and K. Ghedira. 2011. Inhibitory effect of Teucrium ramosissimum extracts on aflatoxin B1, benzo[a]pyrene, 4-nitro-o-phenylenediamine and sodium azide induced mutagenicity: Correlation with antioxidant activity. S. Afr. J. Bot. 77 (3):730–40. doi:10.1016/j.sajb.2011.03.014.
  • Silva, C. R., F. F. V. Borges, A. Bernardes, C. N. Perez, D. M. Silva, and L. Chen-Chen. 2015. Genotoxic, cytotoxic, antigenotoxic, and anticytotoxic effects of sulfonamide chalcone using the Ames test and the mouse bone marrow micronucleus test. PLoS One 10 (9):1–11. doi:10.1371/journal.pone.0137063.
  • Singh, N. P., M. T. McCoy, R. R. Tice, and E. L. Schneider. 1988. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res 175 (1):184–91. doi:10.1016/0014-4827(88)90265-0.
  • Slapšytė, G., V. Dedonytė, J. Lazutka, J. Mierauskienė, V. Morkūnas, R. Kazernavičiūtė, A. Pukalskas, and P. Venskutonis. 2013. Evaluation of the biological activity of naturally occurring 5,8-dihydroxycoumarin. Molecules 18 (4):4419–36. doi:10.3390/molecules18044419.
  • Srikrishna, D., C. Godugu, and P. K. Dubey. 2018. A review on pharmacological properties of coumarins. Mini Rev. Med. Chem 18 (2):113–41. doi:10.2174/1389557516666160801094919.
  • Stefanachi, A., F. Leonetti, L. Pisani, M. Catto, and A. Carotti. 2018. Coumarin: A natural, privileged and versatile scaffold for bioactive compounds. Molecules 23 (2):250. doi:10.3390/molecules23020250.
  • Sunjog, K., S. Kolarević, K. Héberger, Z. Gačić, J. Knežević-Vukčević, B. Vuković-Gačić, and M. Lenhardt. 2013. Comparison of comet assay parameters for estimation of genotoxicity by sum of ranking differences. Anal. Bioanal. Chem. 405 (14):4879–85. doi:10.1007/s00216-013-6909-y.
  • Torigge, T., M. Arisawa, S. Itoh, M. Fujiu, and H. B. Maruyama. 1983. Anti-mutagenic chalcones: Antagonizing the mutagenicity of benzo(a)pyrene on Salmonella typhimurium. Biochemical and Biophysical Research Communications 112 (3):833–42. doi:10.1016/0006-291X(83)91693-5.
  • Torres, F., G. Azambuja, I. Gonçalves, G. Gonçalves, G. V. Poser, D. Kawano, and V. Eifler-Lima. 2016. 1-[2-(4-methyl-7-coumarinyloxy)ethyl]-4-(5-{1-[2-(4-methyl-7-coumarinyloxy)ethyl]-1H-1,2,3-triazol-4-yl}pentyl)-1H-1,2,3-triazole. Molbank (M894):1–3. doi:10.3390/M894.
  • Torres, F., N. Brucker, S. Andrade, D. Kawano, S. Garcia, G. Poser, and V. Eifler-Lima. 2014. New insights into the chemistry and antioxidant activity of coumarins. Curr. Top. Med. Chem. 14 (22):2600–23. doi:10.2174/1568026614666141203144551.
  • Vazquez-Rodriguez, S., R. Figueroa-Guíñez, M. J. Matos, L. Santana, E. Uriarte, M. Lapier, J. D. Maya, and C. Olea-Azar. 2013. Synthesis of coumarin–chalcone hybrids and evaluation of their antioxidant and trypanocidal properties. Med. Chem. Comm. 4 (6):993. doi:10.1039/c3md00025g.
  • Vazquez-Rodriguez, S., S. Vilar, S. Kachler, K. Klotz, E. Uriarte, F. Borges, and M. J. Matos. 2020. Adenosine receptor ligands: Coumarin–chalcone hybrids as modulating agents on the activity of HARs. Molecules 25 (18):4306. doi:10.3390/MOLECULES25184306.
  • Vecchio, G. 2015. A fruit fly in the nanoworld: Once again Drosophila contributes to environment and human health. Nanotoxicology 9 (2):135–37. doi:10.3109/17435390.2014.911985.
  • Véras, J. H., C. R. Vale, D. C. S. Lima, M. M. Anjos, A. Bernardes, A. V. M. Filho, C. R. Silva, G. R. Oliveira, C. N. Pérez, and L. Chen-Chen. 2020. Modulating effect of a hydroxychalcone and a novel coumarin–chalcone hybrid against mitomycin-induced genotoxicity in somatic cells of Drosophila melanogaster. Drug Chem. Toxicol. doi:10.1080/01480545.2020.1776314.
  • Vilar, J. B., F. L. Ferreira, P. H. Ferri, L. A. Guillo, and L. Chen Chen. 2008. Assessment of the mutagenic, antimutagenic and cytotoxic activities of ethanolic extract of araticum (Annona crassiflora Mart. 1841) by micronucleus test in mice. Braz. J. Biol. 68 (1):141–47. doi:10.1590/S1519-69842008000100020.
  • Wang, X., Y. Shen, S. Wang, S. Li, W. Zhang, X. Liu, L. Lai, J. Pei, and H. Li. 2017. PharmMapper 2017 update: A web server for potential drug target identification with a comprehensive target pharmacophore database. Nucl Acids Res. Spec. Publ. 45 (W1):W356–W360. doi:10.1093/NAR/GKX374.
  • Wang, Y., W. Zhang, J. Dong, and J. Gao. 2020. Design, synthesis and bioactivity evaluation of coumarin-chalcone hybrids as potential anticancer agents. Bioorg. Chem. 95:103530. doi:10.1016/J.BIOORG.2019.103530.
  • Wei, H., J. Ruan, and X. Zhang. 2016. Coumarin–chalcone hybrids: Promising agents with diverse pharmacological properties. Roy Soc Chem Adv 6:10846–60. doi:10.1039/C5RA26294A.
  • Xiao, Y., Y. Wang, X. Xiao, Q. Zhao, J. Huang, W. Zhu, and F. Li. 2020. Metabolic profiling of coumarins by the combination of UPLC-MS-based metabolomics and multiple mass defect filter. Xenobiotica 50 (9):1076–89. doi:10.1080/00498254.2020.1744047.
  • Zeiger, E. 2019. The test that changed the world: The Ames test and the regulation of chemicals. Mutat. Res. - Genet. Toxicol. Environ. Mutagen. 841:43–48. doi:10.1016/J.MRGENTOX.2019.05.007.
  • Zhang, K., E. B. Yang, W. Y. Tang, K. P. Wong, and P. Mack. 1997. Inhibition of glutathione reductase by plant polyphenols. Biochem. Pharmacol. 54 (9):1047–53. doi:10.1016/S0006-2952(97)00315-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.