153
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Multi-instrument assessment of fine and ultrafine titanium dioxide aerosols

ORCID Icon, ORCID Icon, ORCID Icon, , &

References

  • Aitken, R. J., M. Q. Chaudhry, A. B. A. Boxall, and M. Hull. 2006. Manufacture and use of nanomaterials: Current status in the UK and global trends. Occup Med 56:300–06. doi:10.1093/occmed/kql051.
  • Asbach, C., H. Kaminski, H. Fissan, C. Monz, D. Dahmann, S. Mühlhopt, H. Paur, H. Kiesling, F. Herrmann, M. Voetz, et al. 2009. Comparison of four mobility particle sizers with different time resolution for stationary exposure measurements. J Nanopart Res 11:1593–609. doi:10.1007/s11051-009-9679-x.
  • Bekker, C., D. H. Brouwer, B. van Duuren-Stuurman, I. L. Tuinman, P. Tromp, and W. Fransman. 2014. Airborne manufactured nano-objects released from commercially available spray products: Temporal and spatial influences. J Expo Sci Environ Epidemiol 24:74–81. PMID: 23860399. doi:10.1038/jes.2013.36.
  • Bellagamba, I., F. Boccuni, R. Ferrante, F. Tombolini, F. Marra, M. S. Sarto, and S. Iavicoli. 2020. Workers’ exposure assessment during the production of graphene nanoplatelets in R&D laboratory. Nanomaterials 10:1520. doi:10.3390/nano10081520.
  • Bermudez, E., J. B. Mangum, B. A. Wong, B. Asgharian, P. M. Hext, D. B. Warheit, and J. I. Everitt. 2004. Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles. Toxicol Sci 77:347–57. doi:10.1093/toxsci/kfh019.
  • Boccuni, F., R. Ferrante, F. Tombolini, C. Natale, A. Gordiani, S. Sabella, and S. Lavicoli. 2020. Occupational exposure to graphene and silica nanoparticles. Part I: Workplace measurements and samplings. Nanotoxicology 14:1280–300. doi:10.1080/17435390.2020.1834634.
  • Boffetta, P., V. Gaborieau, L. Nadon, M.-E. Parent, E. Weiderpass, and J. Siemiatycki. 2001. Exposure to titanium dioxide and risk of lung cancer in a population-based study from Montreal. Scand J Work Environ Health 27:227–32. doi:10.5271/sjweh.609.
  • Brouwer, D. H., B. van Duuren-Stuurman, M. Berges, D. Bard, E. Jankowska, C. Moehlmann, J. Pelzer, and D. Mark. 2013. Workplace air measurements and likelihood of exposure to manufactured nano-objects, agglomerates, and aggregates. J Nanoparticle Res 15:2090. doi:10.1007/s11051-013-2090-7.
  • Chakrabarti, B, P. M. Fine, R. Delfino, and C. Siouta. 2004. Performance evaluation of the active-flow personal DataRAM PM2.5 mass monitor (Thermo Anderson pDR-1200) designed for continuous personal exposure measurements. Atmos Environ 38:3329–40. doi:10.1016/j.atmosenv.2004.03.007.
  • Chen, B., D. Frazer, S. Stone, D. Schwegler-Berry, J. Cumpston, W. McKinney, B. Lindsley, A. Frazer, M. Donlin, K. Vandestouwe, et al. 2006. Development of a small inhalation system for rodent exposure to fine and ultrafine titanium dioxide aerosols. Proc 7th in Aerosol Conf 858–59.
  • Chen, B., D. Schwegler-Berry, A. Cumpston, J. Cumpston, S. Friend, S. Stone, and M. Keane. 2016. Performance of a scanning mobility particle sizer in measuring diverse types of airborne nanoparticles: Multi-walled carbon nanotubes, welding fumes, and titanium dioxide spray. J Occup Environ Hyg 13:501–18. doi:10.1080/15459624.1148267.
  • Chen, X., and A. Selloni. 2014. Introduction: Titanium dioxide (TiO2) nanomaterials. Chem Rev 114:9281–82. doi:10.1021/cr500422r.
  • Cohen, B., S. Charles Jr, and S. McCammon 2001. Air sampling instruments for evaluation of atmospheric contaminants (9 ed.).
  • Demir, E. 2020. An in vivo study of nanorod, nanosphere and nanowire forms of titanium dioxide using Drosophila melanogaster: Toxicity, cellular uptake, oxidative stress and DNA damage. J Toxicol Environ Health A 83:456–69. doi:10.1080/15287394.2020.1777236.
  • Dylla, H., and M. M. Hassan. 2012. Characterization of nanoparticles released during construction of photocatalytic pavements using engineered nanoparticles. J. Nanopart. Res 14:825. doi:10.1007/s11051-012-0825-5.
  • Eastlake, A., C. Beaucham, K. Martinez, M. Dahm, C. Sparks, L. Hodson, and C. Geraci. 2016. Refinement of the nanoparticle emission assessment technique into the nanomaterial exposure assessment technique (NEAT 2.0. J Occup Environ Hyg 13:708–17. doi:10.1080/15459624.2016.1167278.
  • Fonseca, A. S., A.-K. Viitanen, T. Kanerva, A. Säämänen, O. Aguerre-Chariol, S. Fable, A. Dermigny, N. Karoski, I. Fraboulet, I. K. Koponen, et al. 2021. Occupational exposure and environmental release: The case study of pouring TiO2 and filler materials for paint production. Int. J. Environ. Res. Public Health 18:418. doi:10.3390/ijerph18020418.
  • Fryzek, J. P., B. Chadda, D. Marano, K. White, S. Schweitzer, J. K. McLaughlin, and W. J. Blot. 2003. A cohort mortality study among titanium dioxide manufacturing workers in the United States. J Occup Environ Med 45:400–09. PMID: 12708144. doi:10.1097/01.jom.0000058338.05741.45.
  • Golanski, L., A. Gaborieau, A. Guiot, G. Uzu, J. Chatenet, and F. Tardif. 2011. Characterization of abrasion-induced nanoparticle release from paints into liquids and air. J. Phys. Conf. Ser 304:012062.
  • Gomez, V., M. Levin, A. T. Saber, S. Irusta, M. Dal Maso, R. Hanoi, J. Santamaria, K. A. Jensen, H. Wallin, and I. K. Koponen. 2015. Comparison of dust release from epoxy and paint nanocomposites and conventional products during sanding and sawing. Ann. Occup. Hyg 58:983–94. doi:10.1093/annhyg/meu046.
  • Görner, P., D. Berner, and J. F. Fabries. 1995. Photometer measurement of polydisperse aerosols. J Aerosol Sci 26:1282–302. doi:10.1016/0021-8502(95)00049-6.
  • Grassian, V. H., P. O’Shaughnessy, T. Adamcakova-Dodd, A. Pettibone, J. M, and P. S. Thorne. 2007. Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2 to 5 nm. Environ Health Perspect 115:397–402. doi:10.1289/ehp.9469.
  • Haar, C., I. Hassing, M. Bol, R. Bleumink, and R. Pieters. 2006. Ultrafine but not fine particulate matter causes airway inflammation and allergic airway sensitization to co-administered antigen in mice. Clin Exp Allergy 36:1469–79. doi:10.1111/j.1365-2222.2006.02586.x.
  • Hamilton, R. F., N. Wu, D. Porter, M. Buford, M. Wolfarth, and A. Holian. 2009. Particle length-dependent titanium dioxide nanomaterials toxicity and bioactivity. Part Fibre Toxicol 6:35. doi:10.1186/1743-8977-6-35.
  • Hanlon, J., K. S. Galea, and S. Verpaele. 2021. Review of workplace based aerosol sampler comparison studies, 2004–2020. Int. J. Environ. Res. Public Health 18:6819. doi:10.3390/ijerph18136819.
  • Higashikubo, I., R. A. Handika, T. Kawamoto, H. Shimizu, T. Thongyen, S. Piriyakarnsakul, A. Muhammad, M. Hata, and M. Furuuchi. 2021. Worker’s personal exposure to PM0.1 and PM4 titanium dioxide nanomaterials during packaging. Aerosol Air Qual. Res 21:200606. doi:10.4209/aaqr.2020.10.0606.
  • Hinds, W. C. 1999. Aerosol Technology: Properties, Behavior and Measurement of Airborne Particles. New York: John Wiley & Sons.
  • Hoshino, A., K. Fujioka, and T. Oku. 2004. Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett 4:2163–69. doi:10.1021/nl048715d.
  • Hou, J., L. Wang, C. Wang, S. Zhang, H. Liu, S. Li, and X. Wang. 2019. Toxicity and mechanisms of action of titanium dioxide nanoparticles in living organisms. J Environ Sci 75:40–53. doi:10.1016/j.jes.2018.06.010.
  • International Agency for Research on Cancer (IARC). 2006. Titanium dioxide (IARC Group 2B), Summary of data reported, Feb.
  • International Agency for Research on Cancer (IARC monograph volume 93). Agents Classified by the IARC Monographs, 1–129. http://monographs.iarc.fr/ENG/Classification/index.php.
  • International Agency for Research on Cancer (IARC): Titanium dioxide (IARC Group 2B), Summary of data reported. 2006. Feb.
  • Jensen, A. C. Ø., M. Levin, K. AJ, K. KI, S. AT, and I. K. Koponen. 2015. Exposure assessment of particulate matter from abrasive treatment of carbon and glass fiber-reinforced epoxy-composites—two case studies. Aerosol Air Qual Res 15:1906–16. doi:10.4209/aaqr.2015.02.0086.
  • Jeong, C. H., and G. J. Evans. 2009. Inter-comparison of a fast mobility particle Sizer and a scanning mobility particle Sizer incorporating an ultrafine water-based condensation particle counter. Aerosol Sci Technol 43:364–73. doi:10.1080/02786820802662939.
  • Jørgensen, R. B. 2019. Comparison of four nanoparticle monitoring instruments relevant for occupational hygiene applications. J Occup Med Toxicol 14:28. doi:10.1186/s12995-019-0247-8.
  • Kaminski, H., M. Beyer, H. Fissan, C. Asbach, and T. A. J. Kuhlbusch. 2015. Measurements of nanoscale TiO2 and Al2O3 in industrial workplace environments – Methodology and results. Aerosol Air Qual. Res 15:129–41. doi:10.4209/aaqr.2014.03.0065;.
  • Knuckles, T. L., J. Yi, D. G. Frazer, H. D. Leonard, B. T. Chen, V. Castranova, and T. R. Nurkiewicz. 2012. Nanoparticle inhalation alters systemic arteriolar vasoreactivity through sympathetic and cyclooxygenase-mediated pathways. Nanotoxicology 6:724–35. doi:10.3109/17435390.2011.606926.
  • Koivisto, A. J., J. Lyyränen, A. Auvinen, E. Vanhala, K. Hämeri, T. Tuom, and J. Jokiniemi. 2012a. Industrial worker exposure to airborne particles during the packing of pigment and nanoscale titanium dioxide. Inhal Toxicol 24:839–49. doi:10.3109/08958378.2012.724474.
  • Koivisto, A. J., J. E. Paloma¨ki, A.-K. Viitanen, K. M. Siivola, I. K. Koponen, M. Yu, A. H. T. Kanerva, T. Hussein, K. M. Savolainen, and K. L. Hameri. 2014. Range finding risk assessment of inhalation exposure to nano diamonds in a laboratory environment. Int J Environ Res Public Health 11:5382–402. doi:10.3390/ijerph110505382.
  • Koivisto, A. J., M. Yu, K. Hämeri, and M. Seipenbusch. 2012b. Size resolved particle emission rates from an evolving indoor aerosol system. J Aerosol Sci 47:58–69. doi:10.1016/j.jaerosci.2011.12.007.
  • Koponen, I. K., K. A. Jensen, and T. Schneider. 2009. Sanding dust from nanoparticle-containing paints: Physical characterization. J. Phys. Conf. Ser 151:012048. doi:10.1088/1742-6596/151/1/012048.
  • Koponen, I. K., A. J. Koivisto, and K. A. Jensen. 2015. Worker exposure and high time-resolution analyses of process-related dust concentrations at mixing stations in two paint factories. Ann Occup Hyg 59:749–63. doi:10.1093/annhyg/mev014.
  • Ku, B. K. 2010. Determination of the ratio of diffusion charging-based surface area to geometric surface area for spherical particles in the size range of 100–900nm. J Aerosol Sci 41:835–47. doi:10.1016/j.jaerosci.2010.05.008.
  • Ku, B. K., and P. Kulkarni. 2012. Comparison of diffusion charging and mobility-based methods for measurement of aerosol agglomerate surface area. J Aerosol Sci 47:100–10. doi:10.1016/j.jaerosci.2012.01.002.
  • Kumar, P., F. Paul, S. Jonathan, and B. Rex. 2008. Treatment of losses of ultrafine aerosol particles in long sampling tubes during ambient measurements. Atmos Environ 42:8819–26. doi:10.1016/j.atmosenv.2008.09.003.
  • Kumar, M., N. Yano, and A. V. Fedulov. 2022. Gestational exposure to titanium dioxide, diesel exhaust and concentrated urban air particles affects levels of specialized pro-resolving mediators in response to allergen in asthma-susceptible neonatal lungs. J Toxicol Environ Health A 85:243–61. doi:10.1080/15287394.2021.2000906.
  • LeBouf, R. F., B. K. Ku, B. T. Chen, J. L. Cumpston, D. G. Frazer, and A. B. Stefaniak. 2011a. Measuring surface area of airborne titanium dioxide powder agglomerates: Relationships between gas adsorption, diffusion and mobility-based methods. J Nanopart Res 13:7029–39. doi:10.1007/s11051-011-0616-4.
  • LeBouf, R. F., A. B. Stefaniak, B. T. Chen, D. G. Frazer, and M. A. Virji. 2011b. Measurement of airborne nanoparticle surface area using a filter-based gas adsorption method for inhalation toxicology experiments. Nanotoxicology 5687–99.
  • Lee, J. H., M. Kwon, J. H. Ji, C. S. Kang, K. H. Ahn, J. H. Han, and I. J. Yu. 2011. Exposure assessment of workplaces manufacturing nanosized TiO2 and silver. Inhal. Toxicol 23:226–36. doi:10.3109/08958378.2011.562567.
  • Leskinen, J., J. Joutsensaari, J. Lyyränen, J. Koivisto, J. Ruusunen, M. Järvelä, T. Tuomi, K. Hämeri, A. Auvinen, and J. Jokiniemi. 2012. Comparison of nanoparticle measurement instruments for occupational health applications. J Nanopart Res 14:718. doi:10.1007/s11051-012-0718-7.
  • Li, N., Y. Duan, M. Hong, L. Zheng, M. Fei, X. Zhao, J. Wang, Y. Cui, H. Liu, J. Cai, et al. 2010. Spleen injury and apoptotic pathway in mice caused by titanium dioxide nanoparticles. Toxicol Lett 195:161–68. doi:10.1016/j.toxlet.2010.03.1116.
  • Liu, X. D., C. Wang, X. J. Meng, X. F. Pan, L. I. J, D. S. Niu, and Z. J. Chen. 2021. A non-targeted metabolomics study on urine of occupational exposure people with titanium dioxide nanoparticles. Chinese J Indust Hyg Occup Dis 9:328–32. PMID: 34074074. doi:10.3760/cma.j.cn121094-20200323-00149.
  • Lovén, K., S. M. Franzén, C. Isaxon, M. E. Messing, J. Martinsson, A. Gudmundsson, J. Pagels, M. Hedmer, L. Nano, and S. M. Franzén. 2021. Emissions and exposures of graphene nanomaterials, titanium dioxide nanofibers, and nanoparticles during down-stream industrial handling. J Expo Sci Environ Epidemiol 31:736–52.
  • Lowenthal, H. D., F. C. Rogers, P. Saxena, J. G. Watson, and J. C. Chow. 1995. Sensitivity of estimated light extinction coefficients to model assumptions and measurement errors. Atmos Environ 29:751–66. doi:10.1016/1352-2310(94)00340-Q.
  • Maricq, M. M., D. H. Podsiadlik, and R.E. Chase. 2000. Chase 2000 size distributions of motor vehicle exhaust PM: A comparison between ELPI and SMPS measurements. Aerosol Sci Technol 33:239–60. doi:10.1080/027868200416231.
  • McGarry, P., L. Morawska, L. D. Knibbs, and H. Morris. 2013. Excursion guidance criteria to guide control of peak emission and exposure to airborne engineered particles. J. Occup. Environ. Hyg 10:640–51. doi:10.1080/15459624.2013.831987.
  • McMurry, P. H., X. Zhang, and Q. T. Lee. 1996. Issues in aerosol measurement for optical assessments. J Geophys Res 101:19188–97.
  • Methner, M., L. Hodson, A. Dames, and C. Geraci. 2010a. Nanoparticle emission assessment technique (NEAT) for the identification and measurement of potential inhalation exposure to engineered nanomaterials-Part B: Results from 12 field studies. J Occup Environ Hyg 7:163–76. PMID: 20063229. doi:10.1080/15459620903508066.
  • Methner, M., L. Hodson, and C. Geraci. 2010b. Nanoparticle emission assessment technique (NEAT) for the identification and measurement of potential inhalation exposure to engineered nanomaterials -Part A. J Occup Environ Hyg 7:127–32. PMID: 20017054. doi:10.1080/15459620903476355.
  • Nemmar, A., H. Vanbilloen, M. Hoylaerts, P. Hoet, A. Verbruggen, and B. Nemery. 2001. Passage of intratracheally instilled ultrafine particles from the lung into the systemic circulation in hamster. Am J Resp Crit Care Med 164:16665–11668. doi:10.1164/rccm2101036.
  • Nicole, M., Berndnowack, and B. Nowack. 2008. Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42:4447–53. doi:10.1021/es7029637.
  • NIOSH. 1980. Metals reduction plant. Ashtabula, Cincinnati, OH: NIOSH/Hazard Evaluations and Technical Assistance Branch/Division of Surveillance/Hazard Evaluations and Field Studies.
  • NIOSH. 1994. Particulates not otherwise regulated, total: method 0500, Issue 2, dated 15 August 1994, 1–3. Centers for disease Control and Prevention.U. S. Department of Health and Human Services. https://www.cdc.gov/niosh/docs/2003-154/pdfs/0500.pdf
  • NIOSH. 1998. Method 0600. Particulates not otherwise regulated, respirable, 1–6. National Institute for Occupational Safety and Health. Centers for disease Control and Prevention. Public Health Service. U. S. Department of Health and Human Services.
  • NIOSH. 2011. CURRENT INTELLIGENCE BULLETIN 63. Occupational Exposure to Titanium Dioxide. Centers for Disease control and prevention. U.S. Department of Human Health and Services (NIOSH), Cincinnati, Ohio, USA. Publication No. 2011–160. https://www.cdc.gov/niosh/docs/2011-160/pdfs/2011-160.pdf?id=10.26616/NIOSHPUB2011160
  • NIOSH/CDC. 2009. Approaches to Safe Nanotechnology Managing the Health and Safety Concerns Associated with NMAM guidance. National Institute for Occupational Safety and Health. Centers for disease Control and Prevention. Public Health Service. U. S. Department of Health and Human Services. https://www.cdc.gov/niosh/docs/2003-154/cassetteguidance.html ( Chapter O, 5th Ed).
  • Nohynek, G. J., E. Antignac, R. Thomas, and H. Toutain. 2010. Safety assessment of personal care products/cosmetics and their ingredients. Toxicol Appl Pharmacol 243:239–59. doi:10.1016/j.taap.2009.12.001.
  • Nurkiewicz, T. R., D. W. Porter, A. F. Hubbs, J. L. Cumpston, B. T. Chen, D. G. Frazer, and V. Castranova. 2008. Nanoparticle inhalation augments particle-dependent systemic microvascular dysfunction. Part Fibre Toxicol 5:1. doi:10.1186/1743-8977-5-1.
  • Oberdörster, G. 1996. Significance of particle parameters in the evaluation of exposure-dose-response relationships of inhaled particles. Inhal Toxicol 8:73–89.
  • Oberdörster, G., N. Finkelstein, C. Johnston, R. Gelein, C. Cox, R. Baggs, and A. Elder. 2000. Acute pulmonary effects of ultrafine particles in rats and mice. disc. 75-7486. Issue number 96. Res Rep Health Effect Inst 5–74.
  • Oberdörster, G., A. Maynard, K. Donaldson, V. Castranova, J. Fitzpatrick, K. Ausman, J. Carter, B. Karn, W. Kreyling, D. Lai, et al. 2005a. Principles for characterizing the potential human health effects from exposure to nanomaterials: Elements of a screening strategy. Part Fibre Toxicol 2:8. doi:10.1186/1743-8977-2-8.
  • Oberdörster, G., E. Oberdörster, and J. Oberdörster. 2005b. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–39. doi:10.1289/ehp.7339.
  • Oberdörster, G., Z. Sharp, V. Atudorei, A. Elder, R. Gelein, W. Kreyling, and C. Cox. 2004. Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol 16:437–45. doi:10.1080/08958370490439597.
  • Oberdörster, G., Z. Sharp, V. Atudorei, A. Elder, R. Gelein, A. Lunts, W. Kreyling, and C. Cox. 2002. Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats. J Toxicol Environ Health A 65:1531–43. doi:10.1080/00984100290071658.
  • Organisation For Economic Co-operation And Development (OECD), Paris. 2015. Harmonized Tiered Approach to Measure and Assess the Potential Exposure to Airborne Emissions of Engineered Nano-Objects and Their Agglomerates and Aggregates at Workplaces; Series on the Safety of Manufactured Nanomaterials; ENV/JM/MONO No. 55;
  • Ostraat, M. L., J. W. Thornburg, and G. J. Q. Malloy. 2012. Measurement strategies of airborne nanomaterials. Environ Eng Sci 30:126–32. doi:10.1089/ees.2012.0331.
  • Pelliccioni, A., and M. Gherardi. 2021. Development and validation of an intra-calibration procedure for MiniDISCs measuring ultrafine particles in multi-spatial indoor environments. Atmos Environ 246. doi:10.1016/j.atmosenv.2020.118154.
  • Puskar, M. A., J. M. Harkins, J. D. Moomey, and L. H. Hecker. 1991. Internal wall losses of pharmaceutical dusts during closed-face, 37-mm polystyrene cassette sampling. Am Ind Hyg Assoc J 52:280–86. doi:10.1080/15298669191364730.
  • Robichaud, C. O., A. E. Uyar, M. R. Darby, L. G. Zucker, and R. Mark. 2009. Estimates of Upper Bounds and Trends in Nano-TiO2 Production as a Basis for Exposure Assessment. Wiesner Environmental Science & Technology 43 (12):4227–4233. doi:10.1021/es8032549.
  • R, H. U. F., S. Rittinghausen, O. Creutzenberg, B. Bellmann, W. Koch, and K. Levsen. 1995. Chronic inhalation exposure of Wistar rats and two different strains of mice to diesel engine exhaust, carbon black, and titanium dioxide. Inhal Toxicol 7:533–56. doi:10.3109/08958379509015211.
  • Sager, T. M., and V. Castranova. 2009. Surface area of particle administered versus mass in determining the pulmonary toxicity of ultrafine and fine carbon black: Comparison to ultrafine titanium dioxide. Part Fibre Toxicol 6:15 . doi:10.1186/1743-8977-6-15.
  • Shi, H., R. Magaye, V. Castranova, and J. Zhao. 2013. Titanium dioxide nanoparticles: A review of current toxicological data. Part Fibre Toxicol 10:15. doi:10.1186/1743-8977-10-15.
  • Shin, W. G., W. Wang, M. Mertler, B. Sachweh, H. Fissan, and D. Y. H. Pui. 2010. The effect of particle morphology on unipolar diffusion charging of nanoparticle agglomerates in the transition regime. J Aerosol Sci 41:975–86. doi:10.1016/j.jaerosci.2010.07.004.
  • Silva, R. M., C. TeeSy, L. Franzi, A. Weir, P. Westerhoff, J. E. Evans, and K. E. Pinkerton. 2013. Biological response to nano-scale titanium dioxide (TiO2): Role of particle dose, shape and retention. J Toxicol Environ Health A 76:953–72. doi:10.1080/15287394.2013.826567.
  • Sioutas, C., S. Kim, M. C. Chang, L. L. Terrell, and H. Gong. 2000. Field evaluation of a modified data ram mie scattering monitor for real-time PM2.5 mass concentration measurements. Atmos Environ 34:4829–38. doi:10.1016/S1352-2310(00)00244-2.
  • Sloane, C. S. 1984. Optical properties of aerosols of mixed composition. Atmos Environ 18:871–78. doi:10.1016/0004-6981(84)90273-7.
  • Spinazzè, A., A. Cattaneo, M. Limonta, V. Bollati, P. A. Bertazzi, and D. M. Cavallo. 2016. Titanium dioxide nanoparticles: Occupational exposure assessment in the photocatalytic paving production. J Nanopart Res 18:15. doi:10.1007/s11051-016-3462-6.
  • Stabile, L., E. Cauda, S. Marini, and G. Buonanno. 2014. Metrological assessment of a portable analyzer for monitoring the particle size distribution of ultrafine particles. Ann Occup Hyg 58:860–76. doi:10.1093/annhyg/meu025.
  • Stoeger, T., C. Reinhard, S. T. A. Schroeppel, H. Schulz, H. Schulz, H. Schulz, H. Schulz, and H. Schulz. 2006. Instillation of six different ultrafine carbon particles indicates a surface area threshold dose for acute lung inflammation in mice. Environ Health Perspect 114:328–33. doi:10.1289/ehp.8266.
  • Thomas, A., and J. Gebhart. 1994. Correlations between gravimetry and light-scattering photometry for atmospheric aerosols. Atmos Environ 28:935–38. doi:10.1016/1352-2310(94)90251-8.
  • Todea, A. M., S. Beckmann, H. Kaminski, and C. Asbach. 2015. Accuracy of electrical aerosol sensors measuring lung deposited surface area concentrations. J Aerosol Sci 89:96–109. doi:10.1016/j.jaerosci.2015.07.003.
  • Todea, A. M., S. Beckmann, H. Kaminski, D. Bard, S. Bau, S. Clavaguera, D. Dahmann, H. Dozol, N. Dziurowitz, K. Elihn, et al. 2017. Inter-comparison of personal monitors for nanoparticles exposure at workplaces and in the environment. Sci Total Environ 605–606:929–45. doi:10.1016/j.scitotenv.2017.06.041.
  • Tombolini, F., F. Boccuni, F. Riccardo, C. Natale, M. Luigi, E. Mantero, A. Aedr, L. Leoncini, V. Pellegrini, S. Sabella, et al. 2021. Integrated and multi-technique approach to characterize airborne graphene flakes in the workplace during the production phases. Nanoscale 13. doi:10.1039/D0NR07114E.
  • TSI. 2009a. Scanning Mobility Particle Sizer Spectrometer Nanoparticle Aggregate Mobility Analysis Software Module, Ed. A. N. Smps-002. TSI Incorporated, Shoreview, MN.
  • TSI. 2009b. Series 3080 Electrostatic Classifiers: Operation and Service Manual. TSI Incorporated, Shoreview, MN. https://tsi.com/getmedia/b15c636e-69ce-4434-9322-31d056a10f02/SMPS-002appnote?ext=.pdf
  • U.S. Geological Survey. Mineral Commodity Summaries, January2022. https://pubs.usgs.gov/periodicals/mcs2022/mcs2022-titanium.pdf
  • Vaquero, -C. G.-C., N. Galarza, J. L. López de Ipiña, and J. L. López de Ipiña. 2016. Exposure assessment to engineered nanoparticles handled in industrial workplaces: The case of alloying nano-TiO2 in new steel formulations. J Aerosol Sci 102:1–15. doi:10.1016/j.jaerosci.2016.08.011.
  • Viana, M., I. Rivas, C. Reche, A. S. Fonseca, N. Pérez, X. Querol, A. Alastuey, M. Álvarez-Pedrerol, and J. Sunyer. 2015. Field comparison of portable and stationary instruments for outdoor urban air exposure assessments. Atmospheric Environment 123:347–57. doi:10.1093/toxsci/kfh019.
  • Vosburgh, D. J. H., B. K. Ku, and T. M. Peters. 2014. Evaluation of a diffusion charger for measuring aerosols in a workplace. Ann Occup Hyg 58:424–436 436. doi:10.1093/annhyg/met082.
  • Warheit, D. B., T. R. Webb, K. L. Reed, S. Frerichs, and C. M. Sayes. 2007. Pulmonary toxicity study in rats with three forms of ultrafine-TiO2 particles: Differential responses related to surface properties. Toxicology 230:90–104. doi:10.1016/j.tox.2006.11.002.
  • Watson, J. G., J. C. Chow, D. A. Sodeman, D. H. Lowenthal, M.-C. O. Chang, K. Park, and X. Wang. 2011. Comparison of four scanning mobility particle sizers at the Fresno Supersite. Particuology 9:204–09. doi:10.1016/j.partic.2011.03.002.
  • WHO guidelines on nanomaterials workers health. https://apps.who.int/iris/bitstream/handle/10665/259671/9789241550048-eng.pdf
  • Xu, H., L. Zhao, Z. Chen, J. Zhou, S. Tang, F. Kong, L. Xinwei, L. Yan, J. Zhang, and G. Jia. 2016. Exposure assessment of workplace manufacturing titanium dioxide particles. Journal of Nanoparticle Research 18:288. doi:10.1007/s11051-016-3508-9.
  • Yi, J., B. Chen, D. Schwegler-Berry, D. Frazer, V. Castranova, C. McBride, T. L. Knuckles, P. A. Stapleton, V. C. Minarchick, and T. R. Nurkiewicz. 2013. Whole-body nanoparticle aerosol inhalation exposures. J Visual Exp 75:e50263. doi:10.3791/50263.
  • Yu, S., Y. Mu, X. Zhang, J. Li, C. Lee, and H. Wang. 2019. Molecular mechanisms underlying titanium dioxide nanoparticles (TiO2 NP) induced autophagy in mesenchymal stem cells ((MSC). J Toxicol Environ Health A 82:997–1008. doi:10.1080/15287394.2019.1688482.
  • Zhao, L., Y. Zhu, Z. Chen, H. Xu, J. Zhou, S. Tang, Z. Xu, F. Kong, X. Li, Y. Zhang, et al. 2018. Cardiopulmonary effects induced by occupational exposure to titanium dioxide nanoparticles. Nanotoxicology 12:169–84. doi:10.1080/17435390.2018.1425502.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.