281
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Individual and combined toxicity of imidacloprid and two seed dressing insecticides on collembolans Folsomia candida

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Alford, A., C. H. Krupke, and M. J. Stout. 2017. Translocation of the neonicotinoid seed treatment clothianidin in maize. PLoS ONE 12 (3):e0173836. doi:10.1371/journal.pone.0173836.
  • Alves, P. R. L., E. J. B. N. Cardoso, A. M. Martines, J. P. Sousa, and A. Pasini. 2014. Seed dressing pesticides on springtails in two ecotoxicological laboratory tests. Ecotoxicol. Environ. Saf. 105:65–71. doi:10.1016/j.ecoenv.2014.04.010.
  • Atwood, L. W., D. A. Mortensen, R. T. Koide, and R. G. Smith. 2018. Evidence for multi-trophic effects of pesticide seed treatments on non-targeted soil fauna. Soil Biol. Biochem. 125:144–55. doi:10.1016/j.soilbio.2018.07.007.
  • Bálint, B., K. Balogh, M. Mézes, and B. Szabó. 2021. Differences in the effects of sodium selenate and sodium selenite on the mortality, reproduction, lipid peroxidation and glutathione redox status of Folsomia candida Willem 1902 (Collembola). Eur. J. Soil Biol. 107:103361. doi:10.1016/j.ejsobi.2021.103361.
  • Bandeira, F. O., P. R. L. Alves, T. B. Hennig, J. Brancalione, D. J. Nogueira, and W. G. Matias. 2021. Chronic effects of clothianidin to non-target soil invertebrates: Ecological risk assessment using the species sensitivity distribution (SSD) approach. J. Hazard. Mater. 419:126491. doi:10.1016/j.jhazmat.2021.126491.
  • Bandeira, F. O., P. R. L. Alves, T. B. Hennig, A. Schiehl, E. J. B. N. Cardoso, and D. Baretta. 2020. Toxicity of imidacloprid to the earthworm Eisenia andrei and collembolan Folsomia candida in three contrasting tropical soils. J. Soils Sediments 20 (4):1997–2007. doi:10.1007/s11368-019-02538-6.
  • Bansal, R., K. Mandal, R. Kumar, and B. Singh. 2019. Dissipation and persistence of clothianidin in soil following its application in sugarcane field. Agric. Res. J 56 (3):453. doi:10.5958/2395-146x.2019.00072.3.
  • Bhandari, G., K. Atreya, P. T. J. Scheepers, and V. Geissen. 2020. Concentration and distribution of pesticide residues in soil: Non-dietary human health risk assessment. Chemosphere 253:126594. doi:10.1016/j.chemosphere.2020.126594.
  • Bonmatin, J. M., C. Giorio, V. Girolami, D. Goulson, D. P. Kreutzweiser, C. Krupke, M. Liess, E. Long, M. Marzaro, E. A. Mitchell, et al. 2015. Environmental fate and exposure; neonicotinoids and fipronil. Environ. Sci. Pollut. Res. 22(1):35–67. doi:10.1007/s11356-014-3332-7.
  • Bonmatin, J. M., E. A. D. Mitchell, G. Glauser, E. Lumawig-Heitzman, F. Claveria, M. Bijleveld van Lexmond, K. Taira, and F. Sánchez-Bayo. 2021. Residues of neonicotinoids in soil, water and people’s hair: A case study from three agricultural regions of the Philippines. Sci. Total. Environ. 757:143822. doi:10.1016/j.scitotenv.2020.143822.
  • Bonmatin, J. M., D. A. Noome, H. Moreno, E. A. D. Mitchell, G. Glauser, O. S. Soumana, M. Bijleveld van Lexmond, and F. Sánchez-Bayo. 2019. A survey and risk assessment of neonicotinoids in water, soil and sediments of Belize. Environ. Pollut. doi:10.1016/j.envpol.2019.03.099.
  • Botías, C., A. David, J. Horwood, A. Abdul-Sada, E. Nicholls, E. Hill, and D. Goulson. 2015. Neonicotinoid residues in wildflowers, a potential route of chronic exposure for bees. Environ. Sci. Technol. 49 (21):12731–40. doi:10.1021/acs.est.5b03459.
  • Cang, T., D. Dai, G. Yang, Y. Yu, L. Lv, L. Cai, Q. Wang, and Y. Wang. 2017. Combined toxicity of imidacloprid and three insecticides to the earthworm, Eisenia fetida (Annelida, Oligochaeta). Environ. Sci. Pollut. Res. 24 (9):8722–30. doi:10.1007/s11356-017-8627-z.
  • Cardoso, D. N., M. Oliveira, A. M. V. M. Soares, and S. Loureiro. 2022. Susceptibility of Folsomia candida to agrochemicals after multigenerational exposure to human pharmaceuticals. Environ. Toxicol. Chem. 41 (3):592–600. doi:10.1002/etc.5013.
  • Cedergreen, N., and A. Nazir. 2014. Quantifying synergy: A systematic review of mixture toxicity studies within environmental toxicology. PLoS ONE 9 (5):e965. doi:10.1371/journal.pone.0096580.
  • Chen, J., M. Saleem, C. Wang, W. Liang, and Q. Zhang. 2018. Individual and combined effects of herbicide tribenuron-methyl and fungicide tebuconazole on soil earthworm Eisenia fetida. Sci Rep 8 (1):2967. doi:10.1038/s41598-018-21288-y.
  • Chen, C., Y. Wang, X. Zhao, Q. Wang, and Y. Qian. 2014. Comparative and combined acute toxicity of butachlor, imidacloprid and chlorpyrifos on earthworm, Eisenia fetida. Chemosphere 100:111–15. doi:10.1016/j.chemosphere.2013.12.023.
  • Chevillot, F., Y. Convert, M. Desrosiers, N. Cadoret, É. Veilleux, H. Cabana, and J. Bellenger. 2017. Selective bioaccumulation of neonicotinoids and sub-lethal effects in the earthworm Eisenia andrei exposed to environmental concentrations in an artificial soil. Chemosphere 186:839–47. doi:10.1016/j.chemosphere.2017.08.046.
  • Christen, V., S. Bachofer, and K. Fent. 2017. Binary mixtures of neonicotinoids show different transcriptional changes than single neonicotinoids in honeybees (Apis mellifera). Environ. Pollut. 220:1264–70. doi:10.1016/j.envpol.2016.10.105.
  • Dankyi, E., C. Gordon, D. Carboo, and I. S. Fomsgaard. 2014. Quantification of neonicotinoid insecticide residues in soils from cocoa plantations using a QuEChERS extraction procedure and LC-MS/MS. Sci. Total Environ. 499:276–83. doi:10.1016/j.scitotenv.2014.08.051.
  • De Lima e Silva, C., W. de Rooij, R. A. Verweij, and C. A. M. van Gestel. 2019. Toxicity in Neonicotinoids to Folsomia candida and Eisenia andrei. Environ. Toxicol. Chem. 39 (3):548–55. doi:10.1002/etc.4634.
  • De Lima e Silva, C., C. van Haren, G. Mainardi, W. de Rooij, M. Ligtelijn, N. M. van Straalen, and C. A. M. van Gestel. 2021. Bringing ecology into toxicology: Life-cycle toxicity of two neonicotinoids to four different species of springtails in LUFA 2.2 natural soil. Chemosphere 263:128245. doi:10.1016/j.chemosphere.2020.128245.
  • English, S. G., N. I. Sandoval-Herrera, C. A. Bishop, M. Cartwright, F. Maisonneuve, J. E. Elliott, and K. C. Welch. 2021. Neonicotinoid pesticides exert metabolic effects on avian pollinators. Sci. Rep. 11 (1):2914. doi:10.1038/s41598-021-82470-3.
  • Environmental Canada. 2007. Guidance document on statistical methods for environmental toxicity test. environmental protection series, EPS 1/RM/46, 2005 with 2007 updates. Ottawa: Environmental Canada.
  • Figueirêdo, L. P., D. B. Athayde, M. A. Daam, C. A. M. van Gestel, G. S. Guerra, P. J. Duarte-Neto, and E. L. G. Espíndola. 2020. Impact of temperature on the toxicity of kraft 36 EC® (a.S. abamectin) and score 250 EC® (a.S. difenoconazole) to soil organisms under realistic environmental exposure scenarios. Ecotoxicol. Environ. Saf. 194:110446. doi:10.1016/j.ecoenv.2020.110446.
  • Figueirêdo, L. P., M. A. Daam, G. Mainardi, J. Mariën, E. L. G. Espíndola, C. A. M. van Gestel, and D. Roelofs. 2019. The use of gene expression to unravel the single and mixture toxicity of abamectin and difenoconazole on survival and reproduction of the springtail Folsomia candida. Environ. Pollut. 244:342–50. doi:10.1016/j.envpol.2018.10.077.
  • Franzen-Klein, D., M. Jankowski, C. L. Roy, H. Nguyen-Phuc, D. Chen, L. Neuman-Lee, P. Redig, and J. Ponder. 2020. Evaluation of neurobehavioral abnormalities and immunotoxicity in response to oral imidacloprid exposure in domestic chickens (Gallus gallus domesticus). J. Toxicol. Environ. Health Part A 83 (2):45–65. doi:10.1080/15287394.2020.1723154.
  • Garcia, M. V. B. 2004. Effects of Pesticides on Soil Fauna: Development of Ecotoxicological Test Methods for Tropical Regions. Ecology and Development Series, vol. 19. Doctoral thesis, University of Bonn, Bonn, Germany
  • Gasparic, H. V., M. Grubelic, V. D. Uzelac, R. Bazok, M. Cacija, Z. Drmic, and D. Lemic. 2020. Neonicotinoid residues in sugar beet plants and soil under different agro-climatic conditions. Agriculture 10 (10):1–16. doi:10.3390/agriculture10100484.
  • Guimarães, B., V. L. Maria, J. Römbke, and M. J. B. Amorim. 2019. Exposure of Folsomia candida (Willem 1902) to teflubenzuron over three generations – Increase of toxicity in the third generation. Agric., Ecosyst. Environ., Appl. Soil Ecol. 134:8–14. doi:10.1016/j.apsoil.2018.10.003.
  • Gunstone, T., T. Cornelisse, K. Klein, A. Dubey, and N. Donley. 2021. Pesticides and soil invertebrates: A hazard assessment. Front. Environ. Sci 9:643847. doi:10.3389/fenvs.2021.643847.
  • Hennig, T. B., P. R. L. Alves, A. Schiehl, R. S. Araújo, L. C. Cabrera, R. R. Morelato, and D. Baretta. 2022. Can the increase in atmospheric temperature enhance the toxicity and risk of fipronil for collembolans in tropical soils? Environ. Sci. Pollut. Res. 29 (18):27104–14. doi:10.1007/s11356-021-18349-7.
  • Hennig, T. B., P. R. L. Alves, T. Toniolo, F. O. Bandeira, W. E. Santos, L. C. Cabrera, I. K. Gilson, and D. Baretta. 2021. Toxicity of fipronil to Folsomia candida in contrasting tropical soils and soil moisture contents: Effects on the reproduction and growth. Ecotoxicology 31 (1):64–74. doi:10.1007/s10646-021-02490-7.
  • Hennig, T. B., F. O. Bandeira, A. J. Dalpasquale, E. J. B. N. Cardoso, D. Baretta, and P. R. L. Alves. 2020. Toxicity of imidacloprid to collembolans in two tropical soils under different soil moisture. J. Environ. Qual. 49 (6):1491–501. doi:10.1002/jeq2.20143.
  • Hernández, A. F., F. Gil, and M. Lacasaña. 2017. Toxicological interactions of pesticide mixtures: An update. Arch. Toxicol. 91 (10):3211–23. doi:10.1007/s00204-017-2043-5.
  • Hernández, A. F., T. Parrón, A. M. Tsatsakis, M. Requena, R. Alarcón, and O. López-Guarnido. 2013. Toxic effects of pesticide mixtures at a molecular level: Their relevance to human health. Toxicology 307:136–45. doi:10.1016/j.tox.2012.06.009.
  • Huang, A., N. W. van den Brinkvan den Brink, L. Buijse, I. Roessink, and P. J. van den Brink. 2021. The toxicity and toxicokinetics of imidacloprid and a bioactive metabolite to two aquatic arthropod species. Aquat. Toxicol. 235:105837. doi:10.1016/j.aquatox.2021.105837.
  • Ihara, M., and K. Matsuda. 2018. Neonicotinoids: Molecular mechanisms of action, insights into resistance and impact on pollinators. Curr. Opin. Insect. Sci 30:86–92. doi:10.1016/j.cois.2018.09.009.
  • ISO. 2014. ISO 11267:2014. Soil quality – inhibition of reproduction of collembola (Folsomia candida) by soil contaminants. Switzerland: International Standardization Organization (ISO), Genève.
  • Jegede, O. O., O. J. Owojori, and J. Römbke. 2017. Temperature influences the toxicity of deltamethrin, chlorpyrifos and dimethoate to the predatory mite Hypoaspis aculeifer (Acari) and the springtail Folsomia candida (Collembola). Ecotoxicol. Environ. Saf. 140:214–21. doi:10.1016/j.ecoenv.2017.02.046.
  • Jeschke, P., R. Nauen, M. Schindler, and A. Elbert. 2011. Overview of the status and global strategy for neonicotinoids. J. Agric. Food Chem. 59 (7):2897–908. doi:10.1021/jf101303g.
  • Jones, M. M., J. L. Duckworth, and J. Robertson. 2018. Toxicity of bifenthrin and mixtures of bifenthrin plus acephate, imidacloprid, thiamethoxam, or dicrotophos to adults of tarnished plant bug (Hemiptera: Miridae). J. Econ. Entomol. 111 (2):829–35. doi:10.1093/jee/tox341.
  • Jones, A., P. Harrington, and G. Turnbull. 2014. Neonicotinoid concentrations in arable soils after seed treatment applications in preceding years. Pest Manage. Sci 70 (12):1780–84. doi:10.1002/ps.3836.
  • Kalpana, D., M. N. Joshi, B. V. Rahula, P. P. Solanki, A. R. Patel, M. F. Raj, and G. Shah Paresh. 2013. Residue of fipronil and imidacloprid in maize when used as combination seed dresser. Pestic. Res. J 24:28–32.
  • Levchenko, M. A., and E. A. Silivanova. 2019. Synergistic and antagonistic effects of insecticide binary mixtures against house flies (Musca domestica). Regul. Mech. Biosyst 10 (1):75–82. doi:10.15421/021912.
  • Li, S., J. Li, Z. Li, X. Ke, L. Wu, and P. Christie. 2021. Toxic effects of norfloxacin in soil on fed and unfed Folsomia candida (Isotomidae: Collembola) and on gut and soil microbiota. Sci. Total Environ. 788:147793. doi:10.1016/j.scitotenv.2021.147793.
  • Li, M., P. Li, L. Wang, M. Feng, and L. Han. 2015. Determination and dissipation of fipronil and its metabolites in peanut and soil. J. Agric. Food Chem. 63 (18):4435–43. doi:10.1021/jf5054589.
  • Limay-Rios, V., G. Forero, Y. Xue, J. Smith, T. Baute, and A. Schaafsma. 2015. Neonicotinoid insecticide residues in soil dust and associated parent soil in fields with a history of seed treatment use on crops in southwestern Ontario. Environ. Toxicol. Chem. 35 (2):303–10. doi:10.1002/etc.3257.
  • Liu, T., X. Wang, X. You, D. Chen, Y. Li, and F. Wang. 2017. Oxidative stress and gene expression of earthworm (Eisenia fetida) to clothianidin. Ecotoxicol. Environ. Saf. 142:489–96. doi:10.1016/j.ecoenv.2017.04.012.
  • Luo, P. 2010. Toxicity interaction of fipronil and imidacloprid against Coptotermes formosanus. Master’s Thesis, Louisiana State University, Louisiana, United States.
  • Macaulay, S. J., K. J. Hageman, J. J. Piggott, and C. D. Matthaei. 2021. Imidacloprid dominates the combined toxicities of neonicotinoid mixtures to stream mayfly nymphs. Sci. Total Environ. 761:143263. doi:10.1016/j.scitotenv.2020.143263.
  • Maloney, E. M., C. A. Morrissey, J. V. Headley, K. M. Peru, and K. Liber. 2018. Can chronic exposure to imidacloprid, clothianidin, and thiamethoxam mixtures exert greater than additive toxicity in Chironomus dilutus? Ecotoxicol. Environ. Saf. 156:354–65. doi:10.1016/j.ecoenv.2018.03.003.
  • Marking, L. L. 1977. Method for assessing additive toxicity of chemical mixtures. In Aquatic toxicology and hazard evaluation. ASTM STP 634, ed. F. Mayer and J. Hamelink, pp. 99–108. Philadelphia, PA: American Society for Testing and Materials.
  • Mikkelsen, N., G. H. Mikkelsen, M. Holmstrup, and J. Jensen. 2019. Recovery period of Folsomia candida influence the impact of nonylphenol and phenanthrene on the tolerance of drought and heat shock. Environ. Pollut. 254:113105. doi:10.1016/j.envpol.2019.113105.
  • Pelosi, C., S. Barot, Y. Capowiez, M. Hedde, and F. Vandenbulcke. 2014. Pesticides and earthworms. A review. Agron. Sustain. Dev 34 (1):199–228. doi:10.1007/s13593-013-0151-z.
  • Pelosi, C., C. Bertrand, G. Daniele, M. Coeurdassier, P. Benoit, S. Nélieu, F. Lafay, V. Bretagnolle, S. Gaba, E. Vulliet, et al. 2021. Residues of currently used pesticides in soils and earthworms: A silent threat? Agric. Ecosyst. Environ. 305:107167. doi:10.1016/j.agee.2020.107167.
  • Pena, S. V. D. F., G. S. Natale, and J. C. Brodeur. 2022. Toxicity of the neonicotinoid insecticides thiamethoxam and imidacloprid to tadpoles of three species of South American amphibians and effects of thiamethoxam on the metamorphosis of Rhinella arenarum. J. Toxicol. Environ. Health Part A 85 (24):1019–39. doi:10.1080/15287394.2022.2147113.
  • Pisa, L. W., V. Amaral-Rogers, L. P. Belzunces, J. M. Bonmatin, C. A. Downs, D. Goulson, D. P. Kreutzweiser, C. Krupke, M. Liess, M. Mcfield, et al. 2015. Effects of neonicotinoids and fipronil on non-target invertebrates. Environ. Sci. Pollut. Res. 22(1):68–102. doi:10.1007/s11356-014-3471-x.
  • Poliserpi, M. B., D. S. Cristos, and J. C. Brodeur. 2021. Imidacloprid seed coating poses a risk of acute toxicity to small farmland birds: A weight-of-evidence analysis using data from the grayish baywing Agelaioides badius. Sci. Total Environ. 763:142957. doi:10.1016/j.scitotenv.2020.142957.
  • Ramasubramanian, T. 2013. Persistence and dissipation kinetics of clothianidin in the soil of tropical sugarcane ecosystem. Water Air Soil Pollut. 224 (3):1468. doi:10.1007/s11270-013-1468-6.
  • Ritchie, E. E., F. Maisonneuve, R. P. Scroggins, and J. J. Princz. 2019. Lethal and sublethal toxicity of thiamethoxam and clothianidin commercial formulations to soil invertebrates in a natural soil. Environ. Toxicol. Chem. 38 (10):2111–20. doi:10.1002/etc.4521.
  • Sabatino, L., M. Scordino, V. Pantò, E. Chiappara, P. Traulo, and G. Gagliano. 2013. Survey of neonicotinoids and fipronil in corn seeds for agriculture. Food Addit. Contam. Part B 6 (1):11–16. doi:10.1080/19393210.2012.717969.
  • Sakamoto, Y., T. I. Hayashi, M. N. Inoue, H. Ohnishi, T. Kishimoto, and K. Goka. 2019. Effects of fipronil on non-target ants and other invertebrates in a program for eradication of the argentine ant, Linepithema humile. Sociobiology 66 (2):227–38. doi:10.13102/sociobiology.v66i2.3772.
  • Santos, M. J. G., A. M. V. M. Soares, and S. Loureiro. 2010. Joint effects of three plant protection products to the terrestrial isopod Porcellionides pruinosus and the collembolan Folsomia candida. Chemosphere 80 (9):1021–30. doi:10.1016/j.chemosphere.2010.05.031.
  • Schaafsma, A., V. Limay–rios, Y. Xue, J. Smith, and T. Baute. 2016. Field-scale examination of neonicotinoid insecticide persistence in soil as a result of seed treatment use in commercial maize (corn) fields in southwestern Ontario. Environ. Toxicol. Chem. 35 (2):295–302. doi:10.1002/etc.3231.
  • Silva, V., H. G. J. Mol, P. Zomer, M. Tienstra, C. J. Ritsema, and V. Geissen. 2019. Pesticide residues in European agricultural soils – a hidden reality unfolded. Sci. Total Environ. 653:1532–45. doi:10.1016/j.scitotenv.2018.10.441.
  • Singh, N. S., R. Sharma, S. K. Singh, and D. K. Singh. 2021. A comprehensive review of environmental fate and degradation of fipronil and its toxic metabolites. Environ. Res. 199:111316. doi:10.1016/j.envres.2021.111316.
  • Stephenson, G. L., and K. R. Solomon. 2017. Quantitative weight of evidence assessment of higher tier studies on the toxicity and risks of neonicotinoid insecticides in honeybees 2: Imidacloprid. J. Toxicol. Environ. Health B 20 (6–7):330–45. doi:10.1080/10937404.2017.1388563.
  • Van Der Sluijs, J. P., V. Amaral-Rogers, L. P. Belzunces, M. F. Bijleveld Van Lexmond, J. M. Bonmatin, M. Chagnon, C. A. Downs, L. Furlan, D. W. Gibbons, C. Giorio, et al. 2015. Conclusions of the worldwide integrated assessment on the risks of neonicotinoids and fipronil to biodiversity and ecosystem functioning. Environ. Sci. Pollut. Res. 22(1):148–54. doi:10.1007/s11356-014-3229-5.
  • van Gestel, C. A. M., C. De Lima e Silva, T. Lam, J. C. Koekkoek, M. H. Lamoree, and R. A. Verweij. 2017. Multigeneration toxicity of imidacloprid and thiacloprid to Folsomia candida. Ecotoxicology 26 (3):320–28. doi:10.1007/s10646-017-1765-8.
  • Vanin, A., C. Pereira, C. Fernandes, W. S. Ferreira, and J. F. Rattes. 2011. Tratamento de sementes de sorgo com inseticidas. Rev. Bras. Sementes 33 (2):299–309. doi:10.1590/S0101-31222011000200012.
  • Victoria, S., M. Hein, E. Harrahy, and T. C. King-Heiden. 2022. Potency matters: Impacts of embryonic exposure to nAchr agonists thiamethoxam and nicotine on hatching success, growth, and neurobehavior in larval zebrafish. J. Toxicol. Environ. Health Part A 85 (18):767–82. doi:10.1080/15287394.2022.2081641.
  • Wang, Y., X. An, W. Shen, L. Chen, J. Jiang, Q. Wang, and L. Cai. 2016. Individual and combined toxic effects of herbicide atrazine and three insecticides on the earthworm, Eisenia fetida. Ecotoxicology 25 (5):991–99. doi:10.1007/s10646-016-1656-4.
  • Wang, Y., C. Chen, Y. Qian, X. Zhao, Q. Wang, and X. Kong. 2015. Toxicity of mixtures of λ-cyhalothrin, imidacloprid and cadmium on the earthworm Eisenia fetida by combination index (CI)-isobologram method. Ecotoxicol. Environ. Saf. 111:242–47. doi:10.1016/j.ecoenv.2014.10.015.
  • Wang, Z., J. Chen, T. Zhan, X. He, and B. Wang. 2020. Simultaneous determination of eight neonicotinoid insecticides, fipronil and its three transformation products in sediments by continuous solvent extraction coupled with liquid chromatography-tandem mass spectrometry. Ecotoxicol. Environ. Saf. 189:110002. doi:10.1016/j.ecoenv.2019.110002.
  • Wang, X., M. A. Martínez, Q. Wu, I. Ares, M. R. Martínez-Larrañaga, A. Anadón, and Z. Yuan. 2016. Fipronil insecticide toxicology: Oxidative stress and metabolism. Crit. Rev. Toxicol. 46 (10):876–99. doi:10.1080/10408444.2016.1223014.
  • Wang, K., S. Pang, X. Mu, S. Qi, D. Li, F. Cui, and C. Wang. 2015. Biological response of earthworm, Eisenia fetida, to five neonicotinoid insecticides. Chemosphere 132:120–26. doi:10.1016/j.chemosphere.2015.03.002.
  • Wang, K., S. Qi, X. Mu, T. Chai, Y. Yang, D. Wang, D. Li, W. Che, and C. Wang. 2015. Evaluation of the toxicity, AChE activity and DNA damage caused by imidacloprid on earthworms, Eisenia fetida. Bull. Environ. Contam. Toxicol. 95 (4):475–80. doi:10.1007/s00128-015-1629-y.
  • Wang, J., J. Wang, G. Wang, L. Zhu, and J. Wang. 2016. DNA damage and oxidative stress induced by imidacloprid exposure in the earthworm Eisenia fetida. Chemosphere 144:510–17. doi:10.1016/j.chemosphere.2015.09.004.
  • Wang, Y., S. Wu, L. Chen, C. Wu, R. Yu, Q. Wang, and X. Zhao. 2012. Toxicity assessment of 45 pesticides to the epigeic earthworm Eisenia fetida. Chemosphere 88 (4):484–91. doi:10.1016/j.chemosphere.2012.02.086.
  • Wang, X., X. Zhu, Q. Peng, Y. Wang, J. Ge, G. Yang, X. Wang, L. Cai, and W. Shen. 2019. Multi-level ecotoxicological effects of imidacloprid on earthworm (Eisenia fetida). Chemosphere 219:923–32. doi:10.1016/j.chemosphere.2018.12.001.
  • Wei, F., D. Wang, H. Li, and J. You. 2021. Joint toxicity of imidacloprid and azoxystrobin to Chironomus dilutus at organism, cell, and gene levels. Aquat. Toxicol. 233:105783. doi:10.1016/j.aquatox.2021.105783.
  • Wood, T. J., and D. Goulson. 2017. The environmental risks of neonicotinoid pesticides: A review of the evidence post 2013. Environ. Sci. Pollut. Res. 24 (21):17285–325. doi:10.1007/s11356-017-9240-x.
  • Yang, G., C. Chen, Y. Wang, Q. Peng, H. Zhao, D. Guo, Q. Wang, and Y. Qian. 2017. Mixture toxicity of four commonly used pesticides at different effect levels to the epigeic earthworm, Eisenia fetida. Ecotoxicol. Environ. Saf. 142:29–39. doi:10.1016/j.ecoenv.2017.03.037.
  • Yu, Z., X. F. Li, S. Wang, L. Y. Liu, and E. Y. Zeng. 2021. The human and ecological risks of neonicotinoid insecticides in soils of an agricultural zone within the Pearl River Delta, South China. Environ. Pollut. 284:117358. doi:10.1016/j.envpol.2021.117358.
  • Yu, Y., X. Li, G. Yang, Y. Wang, X. Wang, L. Cai, and X. Liu. 2019. Joint toxic effects of cadmium and four pesticides on the earthworm (Eisenia fetida). Chemosphere 227:489–95. doi:10.1016/j.chemosphere.2019.04.064.
  • Zhang, Q., B. Zhang, and C. Wang. 2014. Ecotoxicological effects on the earthworm Eisenia fetida following exposure to soil contaminated with imidacloprid. Environ. Sci. Pollut. Res. 21 (21):12345–53. doi:10.1007/s11356-014-3178-z.
  • Zhao, S., J. Dong, H. J. Jeong, K. Okumura, and H. Ueda. 2018. Rapid detection of the neonicotinoid insecticide imidacloprid using a quench body assay. Anal. Bioanal. Chem. 410 (17):4219–26. doi:10.1007/s00216-018-1074-y.
  • Zhou, Y., X. Lu, X. Fu, B. Yu, D. Wang, C. Zhao, Q. Zhang, Y. Tan, and X. Wang. 2018. Development of a fast and sensitive method for measuring multiple neonicotinoid insecticide residues in soil and the application in parks and residential areas. Anal. Chim. Acta 1016:19–28. doi:10.1016/j.aca.2018.02.047.
  • Zhou, Z., X. Wu, Z. Lin, S. Pang, S. Mishra, and S. Chen. 2021. Biodegradation of fipronil: Current state of mechanisms of biodegradation and future perspectives. Appl. Microbiol. Biotechnol. 105 (20):7695–708. doi:10.1007/s00253-021-11605-3.
  • Zortéa, T., A. S. da Silva, T. R. dos Reis, J. C. Segat, A. T. Paulino, J. P. Sousa, and D. Baretta. 2018. Ecotoxicological effects of fipronil, neem cake and neem extract in edaphic organisms from tropical soil. Ecotoxicol. Environ. Saf. 166:207–14. doi:10.1016/j.ecoenv.2018.09.061.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.