141
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Toxicity and effects on anuran tadpole metamorphosis of the anthranilic diamide insecticides chlorantraniliprole and cyantraniliprole

&

References

  • Barry, J. D., H. E. Portillo, I. Billy Annan, R. A. Cameron, D. G. Clagg, R. F. Dietrich, L. J. Watson, R. M. Leighty, D. L. Ryan, J. A. McMillan, et al. 2014. Movement of cyantraniliprole in plants after foliar applications and its impact on the control of sucking and chewing insects. Pest. Manag. Sci. 71:395–403. doi:10.1002/ps.3816.
  • Bentley, K. S., L. J. Fletcher, and M. D.Woodward. 2010. “Chlorantraniliprole: An insecticide of the anthranilic diamide class.” Hayes’ Handbook. Pest. Toxicol, edited by Krieger Robert, 2231–2242. 3rd ed. Academic Press
  • Brodeur, J. C., M. J. Damonte, D. E. Rojas, D. Cristos, C. Vargas, M. B. Poliserpi, and A. E. Andriulo. 2022. Concentration of current-use pesticides in frogs from the Pampa región and correlation of mixture toxicity index with biological effects. Environ. Res. 204:112354. doi:10.1016/j.envres.2021.112354.
  • Brodeur, J. C., and S. V. D. Fonseca Peña. 2023. Effects of the neonicotinoid insecticides thiamethoxam and imidacloprid on metamorphosis of the toad Rhinella arenarum at environmentally-relevant concentrations. J. Toxicol. Environ. Health Part A 86:435–45. doi:10.1080/15287394.2023.2213259.
  • Brodeur, J. C., A. Sassone, G. N. Hermida, and N. Codugnello. 2013. Environmentally-relevant concentrations of atrazine induce non-monotonic acceleration of developmental rate and increased size at metamorphosis in Rhinella arenarum tadpoles. Ecotoxicol. Environ. Saf. 92:10–17. doi:10.1016/j.ecoenv.2013.01.019.
  • Brodeur J. C., R. P. Suarez, G. S. Natale, A. E. Ronco, and M. Elena Zaccagnini. 2011. “Reduced body condition and enzymatic alterations in frogs inhabiting intensive crop production areas.” Ecotoxicology and Environmental Safety 74 (5): 1370–1380. doi:10.1016/j.ecoenv.2011.04.024.
  • Brodeur, J. C., G. Svartz, C. S. Perez-Coll, D. J. G. Marino, and J. Herkovits. 2009. Comparative susceptibility to atrazine of three developmental stages of Rhinella arenarum and influence on metamorphosis: Non-monotonous acceleration of the time to climax and delayed tail resorption. Aquat. Toxicol. 91:161–70. doi:10.1016/j.aquatox.2008.07.003.
  • Brodeur, J. C., and J. Vera Candioti. 2017. Impacts of agriculture and pesticides on amphibian terrestrial life stages: Potential biomonitor/bioindicator species for the pampa region of Argentina. In Ecotoxicology and genotoxicology - non-traditional terrestrial models. M. L. Larramendy ed., pp. 163–94, Royal Society of Chemistry: London. ISBN: 9781.782628118. doi:10.1039/9781788010573-00163.782628118.
  • Brodeur, J. C., K. B. Woodburn, and G. M. Glecka. 2005. Potentiation of the vitellogenic response to 17α‐ethinylestradiol by cortisol in the fathead minnow Pimephales promelas. Environ. Toxicol. Chem. 24:1125–32. doi:10.1897/04-309R.1.
  • Brown, D. B., and L. Cai. 2007. Amphibian metamorphosis. Dev. Biol. 306:20–33. doi:10.1016/j.ydbio.2007.03.021.
  • CDPR. 2019. Surface water for pesticides in agricultural areas in the central coast and Southern California. California Dep. Pest. Reg. 6:1–25.
  • Cheron, M., and F. Brischou. 2020. Aminomethylphosphonic acid alters amphibian embryonic development at environmental concentrations. Environ. Res. 190:109944. doi:10.1016/j.envres.2020.109944.
  • Cordova, D., E. A. Benner, M. D. Sacher, J. J. Rauh, J. S. Sopa, G. P. Lahm, T. P. Selby, T. M. Stevenson, L. Flexner, S. Gutteridge, et al. 2006. Anthranilic diamides: A new class of insecticides with a novel mode of action, ryanodine receptor activation. Pest. Biochem. Physiol 84:196–214. doi:10.1016/j.pestbp.2005.07.005.
  • Denver, R. J. 2021. Stress hormones mediate developmental plasticity in vertebrates with complex life cycles. Neurobiol. Stress 14:100301. doi:10.1016/j.ynstr.2021.100301.
  • Elfikrie, N., Y. B. Ho, S. Z. Zaidon, H. Juahir, and E. S. S. Tan. 2020. Occurrence of pesticides in surface water, pesticides removal efficiency in drinking water treatment plant and potential health risk to consumers in Tengi River Basin, Malaysia. Sci. Total Environ. 712:136540. doi:10.1016/j.scitotenv.2020.136540.
  • European Food Safety Authority (EFSA). 2013. Conclusion on the peer review of the pesticide risk assessment of the active substance chlorantraniliprole. Efsa. J 11: 3143. doi:10.2903/j.efsa.2013.3143.
  • European Food Safety Authority (EFSA). 2014. Conclusion on the peer review of the pesticide risk assessment of the active substance cyantraniliprole. Efsa. J 12: 3814. doi:10.2903/j.efsa.2014.3814.
  • Fonseca Peña, S. V. D., G. S. Natale, and J. C. Brodeur. 2022. Toxicity of the neonicotinoid insecticides thiamethoxam and imidacloprid to tadpoles of three species of South American amphibians and effects of thiamethoxam on the metamorphosis of Rhinella arenarum. J. Toxicol. Environ. Health Part A 85:1019–39. doi:10.1080/15287394.2022.2147113.
  • Gosner, K. 1960. “A simplified table for staging anuran embryos and larvae with notes on identification.” Herpetologica 16:183–190.
  • Greenwood, S. N., R. G. Belz, and B. P. Weiser. 2022. A conserved mechanism for hormesis in molecular systems. Dose-Response 20:1–11. doi:10.1177/15593258221109335.
  • Hadiatullah, H., Y. Zhang, A. Samurkas, Y. Xie, R. Sundarraj, H. Zuilhof, J. Qiao, and Z. Yuchi. 2022. Recent progress in the structural study of ion channels as insecticide targets. Insect Sci. 29:1–30. doi:10.1111/1744-7917.13032.
  • Hannig, G. T., M. Ziegler, and P. G. Marcon. 2009. Feeding cessation effects of chlorantraniliprole, a new anthranilic diamide insecticide, in comparison with several insecticides in distinct chemical classes and mode-of-action groups. Pest Manag. Sci. 65:969–74. doi:10.1002/ps.1781.
  • Hassan, H. F., H. S. Mohammed, and N. M. Meligi. 2021. Potential impact of marjoram on coragen- induced physiological and histological alterations in male albino rats. Egyptian. J Zool 75:25–38. doi:10.21608/ejz.2020.49316.1044.
  • Hill, C. E., J. P. Myers, and L. N. Vandenberg. 2018. Nonmonotonic dose–response curves occur in dose ranges that are relevant to regulatory decision-making. Dose-Response 16:1–4. doi:10.1177/1559325818798282.
  • IUCN. 2022. The IUCN red list of threatened species. Version 2021-3. https://www.iucnredlist.org.
  • Jayasiri, M. M. J. G. C. N., S. Yadav, N. D. K. Dayawansa, C. R. Propper, V. Kumar, and G. R. Singleton. 2022. Spatio-temporal analysis of water quality for pesticides and other agricultural pollutants in Deduru Oya River basin of Sri Lanka. J. Clean. Product 330:129897. doi:10.1016/j.jclepro.2021.129897.
  • Jenkins, J. A., K. R. Hartop, G. Bukhari, D. E. Howton, K. L. Smalling, S. V. Mize, M. L. Hladik, D. Johnson, R. O. Draugelis-Dale, and B. L. Brown. 2021. Juvenile African clawed frogs (Xenopus laevis) express growth, metamorphosis, mortality, gene expression and metabolic changes when exposed to thiamethoxam and clothianidin. Int J Mol Sci 22:13291. doi:10.3390/ijms222413291.
  • Kimura, M., A. Shoda, M. Murata, Y. Hara, S. Yonoichi, Y. Ishida, Y. Mantani, T. Yokoyama, T. Hirano, Y. Ikenaka, et al. 2023. Neurotoxicity and behavioral disorders induced in mice by acute exposure to the diamide insecticide chlorantraniliprole. J. Vet. Med. Sci. 85 (4):497–506. doi:10.1292/jvms.23-0041.
  • Kleinau, G., C. L. Worth, A. Kreuchwig, H. Biebermann, P. Marcinkowski, P. Scheerer, and G. Krause. 2017. Structural–functional features of the thyrotropin receptor: A class a G-protein-coupled receptor at work. Front. Endocrinol 8:86. doi:10.3389/fendo.2017.00086.
  • Kolupaeva, V. N., A. A. Kokoreva, A. A. Belik, and P. A. Pletenev. 2019. Study of the behavior of the new insecticide cyantraniliprole in large lysimeters of the Moscow State University. Open Agric. 4:599–607. doi:10.1515/opag-2019-0057.
  • Lagarde, F., C. Beausoleil, S. M. Belcher, L. P. Belzunces, C. Emond, M. Guerbet, and C. Rousselle. 2015. Non-monotonic dose-response relationships and endocrine disruptors: A qualitative method of assessment. Environ. Health 14 (1):13. doi:10.1186/1476-069X-14-13.
  • Lahm, G. P., T. P. Selby, J. H. Freudenberger, T. M. Stevenson, B. J. Myers, G. Seburyamo, B. K. Smith, L. Flexner, C. E. Clark, and D. Cordova. 2005. Insecticidal anthranilic diamides: A new class of potent ryanodine receptor activators. Bioorg. Med. Chem. Lett. 15 (22):4898–906. doi:10.1016/j.bmcl.2005.08.034.
  • Lalonde, B., and C. Garron. 2020. Temporal and spatial analysis of surface water pesticide occurrences in the maritime region of Canada. Arch. Environ. Contam. Toxicol. 79 (1):12–22. doi:10.1007/s00244-020-00742-x.
  • Larson, J. L., C. T. Redmond, and D. A. Potter. 2012. Comparative impact of an anthranilic diamide and other insecticidal chemistries on beneficial invertebrates and ecosystem services in turfgrass. Pest Manag. Sci. 68:740–48. doi:10.1002/ps.2321.
  • McClelland, S. J., and S. K. Woodley. 2022. Developmental exposure to trace concentrations of chlorpyrifos results in nonmonotonic changes in brain shape and behavior in amphibians. Environ. Sci. Technol. 56 (13):9379–86. doi:10.1021/acs.est.2c01039.
  • Mondal, A. K., K. Goswami, S. Ghosh, S. Pal, A. K. Mukherjee, P. Samanta, D. Kole, and A. R. Ghosh. 2019. RETRACTED ARTICLE: Toxicity analysis of Ferterra (Chlorantraniliprole 0.4% GR) on Tilapia (Oreochromis niloticus (Linn.): Histological and ultrastructural observations. Proc. Zool. Soc 73:324–324. doi:10.1007/s12595-019-00290-w.
  • Nagaraju, B., and V. V. Rathnamma. 2013. Acute toxicity of chlorantraniliprole to freshwater fish Channa punctatus (Bloch). Adv. Zool. Bot 1:78–82. doi:10.13189/azb.2013.010402.
  • Oberemok, V. V., K. V. Laikova, Y. I. Gninenko, A. S. Zaitsev, P. M. Nyadar, and T. A. Adeyemi. 2015. A short history of insecticides. J. Plant. Protect. Res 55 (3):221–26. doi:10.1515/jppr-2015-0033.
  • OECD. 1992. Fish Acute Toxicity Test. OECD Organisation for Co-operation and Economic Development. Test Guideline 203.
  • Okada, R., K. Yamamoto, A. Koda, Y. Ito, H. Hayashi, S. Tanaka, Y. Hanaoka, and S. Kikuyama. 2004. Development of radioimmunoassay for bullfrog thyroid-stimulating hormone (TSH): Effects of hypothalamic releasing hormones on the reléase of TSH from the pituitary in vitro. Gen. Comp. Endocrinol 135:42–50. doi:10.1016/j.ygcen.2003.09.001.
  • Pandey, N., D. Rana, G. Chandrakar, G. Basana Gowda, N. B. Patil, G. G. P. Pandi, M. Annamalai, S. S. Pokhare, P. C. Rath, and T. Adak. 2020. Role of climate change variables (standing water and rainfall) on dissipation of chlorantraniliprole from a simulated rice ecosystem. Ecotoxicol. Environ. Saf. 205:111324. doi:10.1016/j.ecoenv.2020.111324.
  • Rathnamma, V. V., and B. Nagaraju. 2013. Median lethal concentrations (LC50) of chlorantraniliprole and its effects on behavioral changes in freshwater fish Labeo rohita. Int. J. Public. Health 2:137–42. doi:10.11591/ijphs.v2i4.4208.
  • Rathnamma, V. V., and B. Nagaraju. 2014a. Acute toxicity and histopathological changes in freshwater fish Cirrhinus mrigala exposed to chlorantraniliprole. J.Zool. Stud 1:23–30.
  • Rathnamma, V. V., and B. Nagaraju. 2014b. Oxidative stress induced by chlorantraniliprole in various tissues of freshwater fish Ctenopharyngodon idella. J. Med. Sci. Public Health 221:27.
  • Redman, Z. C., C. Anastasio, and R. S. Tjeerdema. 2020. Quantum yield for the aqueous photochemical degradation of chlorantraniliprole and simulation of its environmental fate in a model California rice field. Environ. Toxicol. Chem. 39 (10):1929–35. doi:10.1002/etc.4827.
  • Rezende-Teixeira, P., R. G. Dusi, P. C. Jimenez, L. S. Espindola, and L. V. Costa-Lotufo. 2022. What can we learn from commercial insecticides? Efficacy, toxicity, environmental impacts, and future developments. Environ. Pollut. 300:118983. doi:10.1016/j.envpol.2022.118983.
  • Roelants, K., D. J. Gower, M. Wilkinson, S. P. Loader, S. D. Biju, K. Guillaume, L. Moriau, and F. Bossuyt. 2007. Global patterns of diversification in the history of modern amphibians. Proc. Natl. Acad. Sci. U.S.A. 104:887–92. doi:10.1073/pnas.0608378104.
  • Samurkas, A., L. Yao, H. Hadiatullah, R. Ma, Y. Xie, R. Sudarraj, H. Zuilhof, and Z. Yuchi. 2022. Ryanodine receptor as insecticide target. Curr. Pharm. Des. 28:26–35. doi:10.2174/1381612827666210902150224.
  • Santos, M. F., A. P. Krüger, L. M. Turchen, G. C. Cutler, E. E. Oliveiral, and R. N. C. Guedes. 2018. Non-targeted insecticidal stress in a pest species: Insecticides, sexual fitness and hormesis in the Neotropical brown stink bug Euschistus heros. Ann. Appl. Biol. 172:375–83. doi:10.1111/aab.12428.
  • Sattelle, D. B., D. Cordova, and T. R. Cheek. 2008. Insect ryanodine receptors: Molecular targets for novel pest control chemicals. Invert. Neurosci. 8 (3):107–19. doi:10.1007/s10158-008-0076-4.
  • Schmidt-Jeffris, R. A., and B. A. Nault. 2016. Anthranilic diamide insecticides delivered via multiple approaches to control vegetable pests: A case study in snap bean. J. Econ. Entomol. 109 (6):2479–88. doi:10.1093/jee/tow219.
  • Schneider, C. A., W. S. Rasband, and K. W. Eliceiri. 2012. NIH image to Image J: 25 years of image analysis. Nat. Meth 9-7:671–75. doi:10.1038/nmeth.2089.
  • Selby, T. P., G. P. Lahm, and T. M. Stevenson. 2016. A retrospective look at anthranilic diamide insecticides: Discovery and lead optimization to chlorantraniliprole and cyantraniliprole. Pest Manag. Sci. 73:658–65. doi:10.1002/ps.4308.
  • Selby, T. P., G. P. Lahm, T. M. Stevenson, K. A. Hughes, D. Cordova, I. Billy Annan, J. D. Barry, E. A. Benner, M. J. Currie, and T. F. Pahutski. 2013. Discovery of cyantraniliprole, a potent and selective anthranilic diamide ryanodine receptor activator with cross-spectrum insecticidal activity. Bioorg. Med. Chem. Lett. 23 (23):6341–45. doi:10.1016/j.bmcl.2013.09.076.
  • Shi, Y.-B. 2000. Amphibian metamorphosis: From morphology to molecular biology, p. 288. New York: John Wiley & Sons.
  • Shuman-Goodier, M. E., G. R. Singleton, A. M. Forsman, S. Hines, N. Christodoulides, K. D. Daniels, and C. R. Propper. 2021. Development assays using invasive cane toads, Rhinella marina, reveal safety concerns of a common formulation of the rice herbicide, butachlor. Environ. Pollut. 272:115955. doi:10.1016/j.envpol.2020.115955.
  • Song, C., J. Zhang, G. Hu, S. Meng, L. Fan, Y. Zheng, J. Chen, and X. Zhang. 2019. Risk assessment of chlorantraniliprole pesticide use in rice-crab coculture systems in the basin of the lower reaches of the Yangtze River in China. Chemosphere 230:440–48. doi:10.1016/j.chemosphere.2019.05.097.
  • Stinson, S. A., S. Hasenbein, R. E. Connon, X. Deng, J. S. Alejo, S. P. Lawler, and E. B. Holland. 2022. Agricultural surface water, imidacloprid, and chlorantraniliprole result in altered gene expression and receptor activation in Pimephales promelas. Sci. Total Environ. 806:150920. doi:10.1016/j.scitotenv.2021.150920.
  • Stuart, S. N., J. S. Chanson, N. A. Cox, B. E. Young, A. S. L. Rodrigues, D. L. Fischman, and R. W. Waller. 2004. Status and trends of amphibian declines and extinctions worldwide. Scienci. Express 306:1783–86. doi:10.1126/science.1103538.
  • Sun, Z., and H. Xu. 2019. Ryanodine receptors for drugs and insecticides: An overview. Mini. Rev. Med. Chem 19:22–33. doi:10.2174/1389557518666180330112908.
  • Tata, J. R. 2006. Amphibian metamorphosis as a model for the developmental actions of thyroid hormone. Mol. Cell. Endocrinol. 246 (1–2):10–20. doi:10.1016/j.mce.2005.11.024.
  • Thambirajah, A. A., E. M. Koide, J. J. Imbery, and C. C. Helbing. 2019. Contaminant and environmental influences on thyroid hormone action in amphibian metamorphosis. Front. Endocrinol 10:276. doi:10.3389/fendo.2019.00276.
  • Tiwari, S., and L. L. Stelinski. 2013. Effects of cyantraniliprole, a novel anthranilic diamide insecticide, against Asian citrus psyllid under laboratory and field conditions. Pest Manag. Sci. 69:1066–72. doi:10.1002/ps.3468.
  • Tuelher, E. S., E. H. da Silvia, H. L. Freitas, F. A. Namorato, J. Serra, R. N. C. Guedes, and E. E. Oliveira. 2017. Chlorantraniliprole-mediated toxicity and changes in sexual fitness of the Neotropical brown stink bug Euschistus heros. J. Pest. Sci 90:397–405. doi:10.1007/s10340-016-0777-0.
  • United Nations. 2019. Globally harmonized system of classification and labelling of chemicals. Eight Revised. doi:10.18356/f8fbb7cb-en
  • USEPA. 2012. Ecological effects test OCSPP 850.2000: Background and special considerations- tests with terrestrial wildlife. Washington: Office of Chemical Safety and Pollution Prevention (7101). EPA 712-C-026.
  • Utami, R. R., G. W. Geerling, I. R. S. Salami, S. Notodarmojo, and M. J. Ragas. 2020. Environmental prioritization of pesticide in the upper Citarum River Basin, Indonesia, using predicted and measured concentrations. Sci. Total Environ. 738:140130. doi:10.1016/j.scitotenv.2020.140130.
  • Vela, N., G. Pérez-Lucas, M. J. Navarro, I. Garrido, J. Fenoll, and S. Navarro. 2017. Evaluation of the leaching potential of anthranilamide insecticides through the soil. Bull. Environ. Contam. Toxicol 99 (4):465–69. doi:10.1007/s00128-017-2155-x.
  • Wei, L., W.-W. Shao, G.-H. Ding, X.-L. Fan, M.-L. Yu, and Z.-H. Lin. 2014. Acute and joint toxicity of three agrochemicals to Chinese tiger frog (Hoplobatrachus chinensis) tadpoles. Zool. Res 35:272–79.
  • Wei, L., W.-W. Shao, and Z.-H. Lin. 2021. Effects of four individual pesticides and their pairwise combinations on the survival and growth of the tadpoles of two anuran species. Pakistan J. Zool 54:1–10. doi:10.17582/journal.pjz/20181124041148.
  • Xu, C., Y. Fan, X. Zhang, W. Kong, W. Miao, and Q. X. Li. 2020. DNA damage in liver cells of the tilapia fish Oreochromis mossambicus larva induced by the insecticide cyantraniliprole at sublethal doses during chronic exposure. Chemosphere 238:124586. doi:10.1016/j.chemosphere.2019.124586.
  • Zhang, C., X. Hu, H. Zhao, M. Wu, H. He, C. Zhang, T. Tang, L. Ping, and Z. Li. 2013. Residues of cyantraniliprole and its metabolite J9Z38 in rice field ecosystem. Chemosphere 93 (1):190–95. doi:10.1016/j.chemosphere.2013.05.033.
  • Zhang, Z., P. Sun, J. Zhao, H. Zhang, X. Wang, L. Li, L. Xiong, N. Yang, Y. Li, Z. Yuchi, et al. 2022. Design, synthesis and biological activity of diamide compounds based on 3-substituent of the pyrazole ring. Pest. Manage. Sci 78:2022–33. doi:10.1002/ps.6826.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.