190
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effects of curcumin to counteract levodopa-induced toxicity in zebrafish

, , &

References

  • Abrao, L. C., D. G. Costa-Silva, M. G. Santos, M. B. R. Cerqueira, E. Badiale-Furlong, A. L. Muccillo-Baisch, and M. A. Hort. 2022. Toxicity evaluation of traditional and organic yerba mate (Ilex paraguariensis A. St.-Hil.) extracts. J. Toxicol. Environ. Health A 85 (11):461–79. doi:10.1080/15287394.2022.2035873.
  • Agostini, J. F., G. D. Santo, S. L. Baldin, H. T. Bernardo, A. C. S. de Farias, E. P. Rico, and A. G. Wanderley. 2021. Gallic acid reverses neurochemical changes induced by prolonged ethanol exposure in the zebrafish brain. Neuroscience 455:251–62. doi:10.1016/j.neuroscience.2020.11.040.
  • Aleström, P., L. D’Angelo, P. J. Midtlyng, D. F. Schorderet, S. Schulte-Merker, F. Sohm, and S. Warner. 2020. Zebrafish: housing and husbandry recommendations. Lab. Anim. 54 (3):213–24. doi:10.1177/0023677219869037.
  • Altenhofen, S., D. D. Nabinger, P. E. R. Bitencourt, and C. D. Bonan. 2019. Dichlorvos alters morphology and behavior in zebrafish (Danio rerio) larvae. Environ. Pollut. 245:1117–23. doi:10.1016/j.envpol.2018.11.095.
  • Antonini, A., E. Tolosa, Y. Mizuno, M. Yamamoto, and W. H. Poewe. 2009. A reassessment of risks and benefits of dopamine agonists in Parkinson’s disease. Lancet Neurol. 8 (10):929–37. doi:10.1016/S1474-4422(09)70225-X.
  • Atzei, A., I. Jense, E. P. Zwart, J. Legradi, B. J. Venhuis, L. T. M. van der Ven, H. J. Heusinkveld, and E. V. S. Hessel. 2021. Developmental neurotoxicity of environmentally relevant pharmaceuticals and mixtures thereof in a zebrafish embryo behavioural test. Int. J. Env. Res. Pub. He. 18 (13):6717–19. doi:10.3390/ijerph18136717.
  • Bagheri, H., F. Ghasemi, G. E. Barreto, R. Rafiee, T. Sathyapalan, and A. Sahebkar. 2020. Effects of curcumin on mitochondria in neurodegenerative diseases. BioFactors 46 (1):5–20. doi:10.1002/biof.1566.
  • Balestrino, R., and A. H. V. Schapira. 2020. Parkinson disease. Eur. J. Neurol. 27 (1):27–42. doi:10.1111/ene.14108.
  • Bao, W., A. D. Volgin, E. T. Alpyshov, A. J. Friend, T. V. Strekalova, M. S. de Abreu, C. Collins, T. G. Amstislavskaya, K. A. Demin, and A. V. Kalueff. 2019. Opioid neurobiology, neurogenetics and neuropharmacology in zebrafish. Neuroscience 404:218–32. doi:10.1016/j.neuroscience.2019.01.045.
  • Barclay, L. R. C., M. R. Vinqvist, K. Mukai, H. Goto, Y. Hashimoto, A. Tokunaga, and H. Uno. 2000. On the antioxidant mechanism of curcumin: classical methods are needed to determine antioxidant mechanism and activity. Org. Lett. 2 (18):2841–43. doi:10.1021/ol000173t.
  • Barros, S., A. M. Coimbra, N. Alves, M. Pinheiro, J. B. Quintana, M. M. Santos, and T. Neuparth. 2020. Chronic exposure to environmentally relevant levels of simvastatin disrupts zebrafish brain gene signaling involved in energy metabolism. J. Toxicol. Environ. Health A 83 (3):113–25. doi:10.1080/15287394.2020.1733722.
  • Basnet, R. M., D. Zizioli, S. Taweedet, D. Finazzi, and M. Memo. 2019. Zebrafish larvae as a behavioral model in neuropharmacology. Biomedicines 7 (1):23. doi:10.3390/biomedicines7010023.
  • Benameur, T., G. Giacomucci, M. A. Panaro, M. Ruggiero, T. Trotta, V. Monda, I. Pizzolorusso, D. D. Lofrumento, C. Porro, and G. Messina. 2021. New promising therapeutic avenues of curcumin in brain diseases. Molecules 27 (1):236. doi:10.3390/molecules27010236.
  • Bradford, M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72 (1–2):248–54. doi:10.1016/0003-2697(76)90527-3.
  • Briñez-Gallego, P., D. G. da Costa Silva, M. F. Cordeiro, A. P. Horn, and M. A. Hort. 2023. Experimental models of chemically induced Parkinson’s disease in zebrafish at the embryonic larval stage: a systematic review. J. Toxicol. Environ. Health - B. 26 (4):201–37. doi:10.1080/10937404.2023.2182390.
  • Brustein, E., L. Saint-Amant, R. R. Buss, M. Chong, J. R. McDearmid, and P. Drapeau. 2003. Steps during the development of the zebrafish locomotor network. J. Physiol. (Paris) 97 (1):77–86. doi:10.1016/j.jphysparis.2003.10.009.
  • Burgess, H. A., and M. Granato. 2007. Modulation of locomotor activity in larval zebrafish during light adaptation. J. Exp. Biol. 210 (14):2526–39. doi:10.1242/jeb.003939.
  • Cassar, S., I. Adatto, J. L. Freeman, J. T. Gamse, I. Iturria, C. Lawrence, A. Muriana, R. T. Peterson, S. Van Cruchten, and L. I. Zon. 2020. Use of zebrafish in drug discovery toxicology. Chem. Res. Toxicol. 33 (1):95–118. doi:10.1021/acs.chemrestox.9b00335.
  • Cheng, R. K., S. Krishnan, and S. Jesuthasan. 2016. Activation and inhibition of tph2 serotonergic neurons operate in tandem to influence larval zebrafish preference for light over darkness. Sci. Rep. 6 (1):1–10. doi:10.1038/srep20788.
  • Chen, Z., G. Li, and J. Liu. 2020. Autonomic dysfunction in Parkinson’s disease: Implications for pathophysiology, diagnosis, and treatment. Neurobiol. Dis. 134:104700. doi:10.1016/j.nbd.2019.104700.
  • Colón-Cruz, L., L. Kristofco, J. Crooke-Rosado, A. Acevedo, A. Torrado, B. W. Brooks, M. A. Sosa, and M. Behra. 2018. Alterations of larval photo-dependent swimming responses (pdr): New endpoints for rapid and diagnostic screening of aquatic contamination. Ecotox. Environ. Safe. 147:670–80. doi:10.1016/j.ecoenv.2017.09.018.
  • Concea. 2018. Resolução Normativa No 37, de 15 de Fevereiro de 2018. Brasília. Conselho Nacional de Controle de Experimentação Animal. Diretriz Da Prática de Eutanásia: 49.
  • Concetta Scuto, M., C. Mancuso, B. Tomasello, M. Laura Ontario, A. Cavallaro, F. Frasca, L. Maiolino, A. Trovato Salinaro, E. J. Calabrese, and V. Calabrese. 2019. Curcumin, hormesis and the nervous system. Nutrients 11 (10):2417. doi:10.3390/nu11102417.
  • Costa-Silva, D. G., L. P. Leandro, P. B. Vieira, N. R. de Carvalho, A. R. Lopes, L. E. Schimith, M. E. M. Nunes, R. S. de Mello, I. K. Martins, A. A. de Paula, et al. 2018. N-acetylcysteine inhibits mancozeb-induced impairments to the normal development of zebrafish embryos. Neurotoxicol. Teratol. 68:1–12. doi:10.1016/j.ntt.2018.04.003.
  • Crilly, S., A. Parry-Jones, X. Wang, J. N. Selley, J. Cook, V. S. Tapia, C. S. Anderson, S. M. Allan, and P. R. Kasher. 2022. Zebrafish drug screening identifies candidate therapies for neuroprotection after spontaneous intracerebral haemorrhage. Dis. Model Mech. 15 (3):dmm049227. doi:10.1242/dmm.049227.
  • Dominiak, K., and W. Jarmuszkiewicz. 2021. The relationship between mitochondrial reactive oxygen species production and mitochondrial energetics in rat tissues with different contents of reduced coenzyme Q. Antioxidants 10 (4):533. doi:10.3390/antiox10040533.
  • Doyle, J. M., and R. P. Croll. 2022. A critical review of zebrafish models of Parkinson’s disease. Front Pharmacol. 13:835827. doi:10.3389/fphar.2022.835827.
  • Drapeau, P., L. Saint-Amant, R. R. Buss, M. Chong, J. R. McDearmid, and E. Brustein. 2002. Development of the locomotor network in zebrafish. Prog. Neurobiol. 68 (2):85–111. doi:10.1016/S0301-0082(02)00075-8.
  • Esterbauer, H., and K. H. Cheeseman. 1990. Determination of aldehydic lipid peroxidation products: Malonaldehyde and 4-hydroxynonenal. Methods Enzymol. 186:407–21.
  • Farrell, T. C., C. L. Cario, C. Milanese, A. Vogt, J. H. Jeong, and E. A. Burton. 2011. Evaluation of spontaneous propulsive movement as a screening tool to detect rescue of parkinsonism phenotypes in zebrafish models. Neurobiol. Dis. 44 (1):9–18. doi:10.1016/j.nbd.2011.05.016.
  • Félix, L. M., A. Luzio, A. Santos, L. M. Antunes, A. M. Coimbra, and A. M. Valentim. 2020. MS-222 induces biochemical and transcriptional changes related to oxidative stress, cell proliferation and apoptosis in zebrafish embryos. Comp. Biochem. Physiol. Part C: Toxicol. Pharmacol. 237:108834. doi:10.1016/j.cbpc.2020.108834.
  • Fontana, B. D., N. J. Mezzomo, A. V. Kalueff, and D. B. Rosemberg. 2018. The developing utility of zebrafish models of neurological and neuropsychiatric disorders: A critical review. Exp. Neurol. 299:157–71. doi:10.1016/j.expneurol.2017.10.004.
  • Francardo, V., and M. A. Cenci. 2014. Investigating the molecular mechanisms of L-DOPA-induced dyskinesia in the mouse. Parkinsonism Relat. Disord. 20:S20–S22. doi:10.1016/S1353-8020(13)70008-7.
  • Gao, X. P., F. Feng, X. Q. Zhang, X. X. Liu, Y. B. Wang, J. X. She, Z. H. He, and M. F. He. 2014. Toxicity assessment of 7 anticancer compounds in zebrafish. 2014. Int. J. Toxicol. 33 (2):98–105. doi:10.1177/1091581814523142.
  • Genario, R., M. S. de Abreu, A. C. V. V. Giacomini, K. A. Demin, and A. V. Kalueff. 2020. Sex differences in behavior and neuropharmacology of zebrafish. Eur. J. Neurosci. 52 (1):2586–603. doi:10.1111/ejn.14438.
  • Haney, W. A., B. Moussaoui, and J. A. Strother. 2020. Prolonged exposure to stressors suppresses exploratory behavior in zebrafish larvae. J. Exp. Biol. 223:jeb224964. doi:10.1242/jeb.224964.
  • Hansen, C. A., D. R. Miller, S. Annarumma, C. T. Rusch, A. Ramirez-Zamora, and H. Khoshbouei. 2022. Levodopa-induced dyskinesia: a historical review of Parkinson’s disease, dopamine, and modern advancements in research and treatment. J. Neurol. 269 (6):2892–909. doi:10.1007/s00415-022-10963-w.
  • Hauser, R. A. 2009. Levodopa: past, present, and future. Eur. Neurol. 62 (1):1–8. doi:10.1159/000215875.
  • Havermans, A., E. P. Zwart, H. W. J. M. Cremers, M. D. M. van Schijndel, R. S. Constant, M. Mešković, L. X. Worutowicz, J. L. A. Pennings, R. Talhout, L. T. M. van der Ven, et al. 2021. Exploring neurobehaviour in zebrafish embryos as a screening model for addictiveness of substances. Toxics. 9(10):250. doi:10.3390/toxics9100250.
  • Hernandez, R. E., L. Galitan, J. Cameron, N. Goodwin, and L. Ramakrishnan. 2018. Delay of initial feeding of zebrafish larvae until 8 days postfertilization has no impact on survival or growth through the juvenile stage. Zebrafish 15 (5):515–18. doi:10.1089/zeb.2018.1579.
  • He, H.-J., X. Xiong, S. Zhou, X.-R. Zhang, X. Zhao, L. Chen, and C.-L. Xie. 2022. Neuroprotective effects of curcumin via autophagy induction in 6-hydroxydopamine Parkinson’s models. Neurochem. Int. 155:105297. doi:10.1016/j.neuint.2022.105297.
  • Idalencio, R., T. M. Lopes, S. M. Soares, A. Pompermaier, B. de Alcantara, H. H. Kalichak, F. Fagundes, C. M. de Oliveira, and L. J. Barcellos. 2021. Effect of levodopa/carbidopa on stress response in zebrafish. J. Comp. Physiol. A. doi:10.1007/s00359-021-01479-1.
  • Igartua, D. E., C. S. Martinez, S. V. Alonso, N. S. Chiaramoni, and M. J. Prieto. 2020. Toxicity assessment of free and dendrimer-complexed curcumin in zebrafish larvae. Pharmanutrition 13:100201. doi:10.1016/j.phanu.2020.100201.
  • Irons, T. D., R. C. MacPhail, D. L. Hunter, and S. Padilla. 2010. Acute neuroactive drug exposures alter locomotor activity in larval zebrafish. Neurotoxicol. Teratol. 32 (1):84–90. doi:10.1016/j.ntt.2009.04.066.
  • Jagatha, B., R. B. Mythri, S. Vali, and M. M. S. Bharath. 2008. Curcumin treatment alleviates the effects of glutathione depletion in vitro and in vivo: therapeutic implications for Parkinson’s disease explained via in silico studies. Free Radic. Biol. Med. 44 (5):907–17. doi:10.1016/j.freeradbiomed.2007.11.011.
  • Kalia, L. V., and A. E. Lang. 2015. Parkinson’s disease. The Lancet 386:896–912. doi:10.1016/S0140-6736(14)61393-3. 9996
  • Kalueff, A. V., A. M. Stewart, and R. Gerlai. 2014. Zebrafish as an emerging model for studying complex brain disorders. Trends Pharmacol. Sci. 35 (2):63–75. doi:10.1016/j.tips.2013.12.002.
  • Khan, K. M., A. D. Collier, D. A. Meshalkina, E. V. Kysil, S. L. Khatsko, T. Kolesnikova, Y. Y. Morzherin, J. E. Warnick, A. V. Kalueff, and D. J. Echevarria. 2017. Zebrafish models in neuropsychopharmacology and CNS drug discovery. Br. J. Pharmacol. 174 (13):1925–44. doi:10.1111/bph.13754.
  • Kotha, T. R., and D. Luthria. 2019. Curcumin: biological, pharmaceutical, nutraceutical, and analytical aspects. Molecules 24 (16):2930. doi:10.3390/molecules24162930.
  • Kulkarni, S. K., M. K. Bhutani, and M. Bishnoi. 2008. Antidepressant activity of curcumin: involvement of serotonin and dopamine system. Psychopharmacology 201 (3):435–42. doi:10.1007/s00213-008-1300-y.
  • Li, Q., J. Lin, Y. Zhang, X. Liu, X. Q. Chen, M.-Q. Xu, L. He, S. Li, and N. Guo. 2015. Differential behavioral responses of zebrafish larvae to yohimbine treatment. Psychopharmacology 232:197–208. doi:10.1007/s00213-014-3656-5.
  • Lin, X., D. Bai, Z. Wei, Y. Zhang, Y. Huang, H. Deng, X. Huang, and P. Mukhopadhyay. 2019. Curcumin attenuates oxidative stress in RAW264.7 cells by increasing the activity of antioxidant enzymes and activating the Nrf2-Keap1 pathway. PLoS One 14 (5):e0216711. doi:10.1371/journal.pone.0216711.
  • Lipski, J., R. Nistico, N. Berretta, E. Guatteo, G. Bernardi, and N. B. Mercuri. 2011. L-DOPA: a scapegoat for accelerated neurodegeneration in Parkinson’s disease? Prog. Neurobiol. 94 (4):389–407. doi:10.1016/j.pneurobio.2011.06.005.
  • Liu, J., Y. Lu, M. Tang, F. Shao, D. Yang, S. Chen, Z. Xu, L. Zhai, J. Chen, Q. Li et al. 2022. Fucoxanthin prevents long-term administration l-DOPA-induced neurotoxicity through the erk/jnk-c-jun system in 6-OHDA-lesioned mice and PC12 cells. Mar Drugs. 20(4):245. doi:10.3390/md20040245.
  • Lockwood, B., S. Bjerke, K. Kobayashi, and S. Guo. 2004. Acute effects of alcohol on larval zebrafish: A genetic system for large-scale screening. Pharmacol. Biochem. Behav. 77 (3):647–54. doi:10.1016/j.pbb.2004.01.003.
  • Lohr, K. M., S. T. Masoud, A. Salahpour, G. W. Miller, and P. Bolam. 2017. Membrane transporters as mediators of synaptic dopamine dynamics: implications for disease. Eur. J. Neurol. 45 (1):30–33. doi:10.1111/ejn.13357.
  • MacRae, C. A., and R. T. Peterson. 2015. Zebrafish as tools for drug discovery. Nat. Rev. Drug Discov. 14 (10):721–31. doi:10.1038/nrd4627.
  • Malave, L., D. R. Zuelke, S. Uribe-Cano, L. Starikov, H. Rebholz, E. Friedman, C. Qin, Q. Li, E. Bezard, and A. H. Kottmann. 2021. Dopaminergic co-transmission with sonic hedgehog inhibits abnormal involuntary movements in models of Parkinson’s disease and l-DOPA induced dyskinesia. Commun. Biol. 4 (1):1–16. doi:10.1038/s42003-021-02567-3.
  • Marques, M. S., M. F. Cordeiro, M. A. G. Marinho, C. O. Vian, G. R. Vaz, B. S. Alves, R. D. Jardim, M. A. Hort, C. L. Dora, and A. P. Horn. 2020. Curcumin-loaded nanoemulsion improves haemorrhagic stroke recovery in wistar rats. Brain Res. 1746:147007. doi:10.1016/j.brainres.2020.147007.
  • Medeiros, M. S., A. F. Schumacher-Schuh, V. Altmann, and C. R. M. Rieder. 2021. A case-control study of the effects of chimarrão (Ilex paraguariensis) and coffee on Parkinson’s disease. Front Neurol. 12:1–6. doi:10.3389/fneur.2021.619535.
  • Mogharbel, B. F., M. A. Cardoso, A. C. Irioda, P. E. F. Stricker, R. C. Slompo, J. M. Appel, N. B. de Oliveira, M. C. Perussolo, C. S. Saçaki, N. N. da Rosa, et al. 2022. Biodegradable nanoparticles loaded with levodopa and curcumin for treatment of Parkinson’s disease. Molecules 27 (9):2811. doi:10.3390/molecules27092811.
  • Mugoni, V., A. Camporeale, and M. M. Santoro. 2014. Analysis of oxidative stress in zebrafish embryos. J. Vis. Exp. 89 (89):1–11. doi:10.3791/51328.
  • Mythri, B. R., and M. Srinivas Bharath. 2012. Curcumin: a potential neuroprotective agent in Parkinson disease. Curr. Pharm. Des. 18 (1):91–99. doi:10.2174/138161212798918995.
  • Nebrisi, E. E. 2021. Neuroprotective activities of curcumin in Parkinson’s disease: A review of the literature. Int. J. Mol. Sci. 22 (20):11248. doi:10.3390/ijms222011248.
  • Nikolova, G., Y. Karamalakova, and V. Gadjeva. 2019. Reducing oxidative toxicity of l-dopa in combination with two different antioxidants: An essential oil isolated from Rosa damascena Mill., and vitamin C. Toxicol. Rep. 6:267–71. doi:10.1016/j.toxrep.2019.03.006.
  • Olanow, C. W. 2015. Levodopa: effect on cell death and the natural history of Parkinson’s disease. Mov. Disorders 30 (1):37–44. doi:10.1002/mds.26119.
  • Park, J. H., <. N.<. N. Lee, and H. S. Kim. 2021. Potential protective roles of curcumin against cadmium-induced toxicity and oxidative stress. J. Toxicol. Environ. Health - B. 24 (3):95–118. doi:10.1080/10937404.2020.1860842.
  • Pípal, M., J. Legradi, M. Smutná, T. Kočí, J. Priebojová, L. Bláhová, M. Krauss, and K. Hilscherová. 2020. Neurobehavioral effects of cyanobacterial biomass field extracts on zebrafish embryos and potential role of retinoids. Aquatic Toxicol. 228:105613. doi:10.1016/j.aquatox.2020.105613.
  • Poewe, W., and P. Mahlknecht. 2020. Pharmacologic treatment of motor symptoms associated with Parkinson disease. Neurol. Clin. 38 (2):255–67. doi:10.1016/j.ncl.2019.12.002.
  • Poewe, W., K. Seppi, C. M. Tanner, G. M. Halliday, P. Brundin, J. Volkmann, A.-E. Schrag, and A. E. Lang. 2017. Parkinson disease. Nat. Rev. Dis. Primers. 3 (1):17013. doi:10.1038/nrdp.2017.13.
  • Priyadarsini, K. I., D. K. Maity, G. H. Naik, M. S. Kumar, M. K. Unnikrishnan, J. G. Satav, and H. Mohan. 2003. Role of phenolic O-H and methylene hydrogen on the free radical reactions and antioxidant activity of curcumin. Free Radic. Biol. Med. 35 (5):475–84. doi:10.1016/S0891-5849(03)00325-3.
  • Pulido-Moran, M., J. Moreno-Fernandez, C. Ramirez-Tortosa, and M. Ramirez-Tortosa. 2016. Curcumin and health. Molecules 21 (3):264. doi:10.3390/molecules21030264.
  • Rakshi, J. S., N. Pavese, T. Uema, K. Ito, P. K. Morrish, D. L. Bailey, and D. J. Brooks. 2002. A comparison of the progression of early Parkinson’s disease in patients started on ropinirole or L-DOPA: An 18 F-DOPA PET study. J. Neural Transm. 109 (12):1433–43. doi:10.1007/s00702-002-0753-0.
  • Ramires Júnior, O. V., B. D. S. Alves, P. A. B. Barros, J. L. Rodrigues, S. P. Ferreira, L. K. S. Monteiro, G. D. M. S. Araújo, S. S. Fernandes, G. R. Vaz, C. L. Dora, et al. 2021. Nanoemulsion improves the neuroprotective effects of curcumin in an experimental model of Parkinson’s disease. Neurotox Res. 39(3):787–99. doi:10.1007/s12640-021-00362-w.
  • Reich, S. G., and J. M. Savitt. 2019. Parkinson’s disease. Med. Clin. North Am. 103 (2):337–50. doi:10.1016/j.mcna.2018.10.014.
  • Rink, E., and M. F. Wullimann. 2004. Connections of the ventral telencephalon (subpallium) in the zebrafish (Danio rerio). Brain Res. 1011 (2):206–20. doi:10.1016/j.brainres.2004.03.027.
  • Ryu, Y.-K., H.-Y. Park, J. Go, Y.-H. Kim, J. H. Hwang, D.-H. Choi, J.-R. Noh, M. Rhee, P.-L. Han, C.-H. Lee et al. 2018. Effects of histone acetyltransferase inhibitors on l-DOPA-induced dyskinesia in a murine model of Parkinson’s disease. J. Neural. Transm. 125(9):1319–31. doi:10.1007/s00702-018-1902-4.
  • Sachett, A., R. Benvenutti, C. G. Reis, M. Gallas-Lopes, L. M. Bastos, G. P. S. Aguiar, A. P. Herrmann, J. V. Oliveira, A. M. Siebel, and A. Piato. 2022. Micronized curcumin causes hyperlocomotion in zebrafish larvae. Neurochem. Res. 47 (2316): 2307.
  • Sachett, A., F. Bevilaqua, R. Chitolina, C. Garbinato, H. Gasparetto, J. Dal Magro, G. M. Conterato, and A. M. Siebel. 2018. Ractopamine hydrochloride induces behavioral alterations and oxidative status imbalance in zebrafish. 2018. J. Toxicol. Environ. Health A 81 (7):194–201. doi:10.1080/15287394.2018.1434848.
  • Shah, M., W. Murad, S. Mubin, O. Ullah, N. U. Rehman, and M. H. Rahman. 2022. Multiple health benefits of curcumin and its therapeutic potential. Environ. Sci. Pollut. Res. 29 (29):43732–44. doi:10.1007/s11356-022-20137-w.
  • Shehata, A. M., O. A. Ahmed-Farid, H. A. Rizk, S. M. Saber, F. M. Lashin, and L. Re. 2020. Neurochemical, neurobehavioral and histochemical effects of therapeutic dose of L-DOPA on striatal neurons in rats: protective effect of virgin coconut oil. Biomed. Pharmacother. 130:110473. doi:10.1016/j.biopha.2020.110473.
  • Simon, D. K., and C. M. Tanner and P. P. Brundin. 2020. Parkinson disease epidemiology, pathology, genetics, and pathophysiology. Clin. Geriatr. Med. 36 (1):1–12. doi:10.1016/j.cger.2019.08.002.
  • Smith, T. S., W. D. Parker, and J. P. Bennett. 1994. L-dopa increases nigral production of hydroxyl radicals in vivo: potential L-DOPA toxicity? Neuroreport 5 (8):1009–11. doi:10.1097/00001756-199404000-00039.
  • Stednitz, S. J., B. Freshner, S. Shelton, T. Shen, D. Black, and E. Gahtan. 2015. Selective toxicity of l-DOPA to dopamine transporter-expressing neurons and locomotor behavior in zebrafish larvae. Neurotoxicol. Teratol. 52:51–56. doi:10.1016/j.ntt.2015.11.001.
  • Vaccari, C. R., El Dib, H. Gomaa, L. C. Lopes, J. L. de Camargo, and R. El Dib. 2019. Paraquat and Parkinson’s disease: A systematic review and meta-analysis of observational studies. J. Toxicol. Environ. Health - B. 22 (5–6):172–202. doi:10.1080/10937404.2019.1659197.
  • Vaz, R. L., T. F. Outeiro, and J. J. Ferreira. 2018. Zebrafish as an animal model for drug discovery in Parkinson’s disease and other movement disorders: A systematic review. Front Neurol. 9:347. doi:10.3389/fneur.2018.00347.
  • Victoria, S., M. Hein, E. Harrahy, and T. C. King-Heiden. 2022. Potency matters: Impacts of embryonic exposure to nAchr agonists thiamethoxam and nicotine on hatching success, growth, and neurobehavior in larval zebrafish. 2022. J. Toxicol. Environ. Health A 85 (18):767–82. doi:10.1080/15287394.2022.2081641.
  • Wang, Y. L., B. Ju, Y. Z. Zhang, H. L. Yin, Y. J. Liu, S. S. Wang, Z. L. Zeng, X. P. Yang, H. T. Wang, and J. F. Li. 2017. Protective effect of curcumin against oxidative stress-induced injury in rats with Parkinson’s disease through the wnt/β-catenin signaling pathway. Cell. Physiol. Biochem. 43 (6):2226–41. doi:10.1159/000484302.
  • Wang, X.-S., Z.-R. Zhang, M.-M. Zhang, M.-X. Sun, W.-W. Wang, and C.-L. Xie. 2017. Neuroprotective properties of curcumin in toxin-base animal models of Parkinson’s disease: A systematic experiment literatures review. BMC Complement Altern. Med. 17 (1):412. doi:10.1186/s12906-017-1922-x.
  • Westerfield, M. 2007. The zebrafish book. A guide for the laboratory use of zebrafish (Danio Rerio). 5th ed. Eugene (Book): University of Oregon Press.
  • Wu, J. Y., C. Y. Lin, T. W. Lin, C. F. Ken, and Y. Der Wen. 2007. Curcumin affects development of zebrafish embryo. Biol. Pharm. Bull. 30 (7):1336–39. doi:10.1248/bpb.30.1336.
  • Xi, Y., S. Noble, and M. Ekker. 2011. Modeling neurodegeneration in zebrafish. Curr. Neurol. Neurosci. Rep. 11 (3):274–82. doi:10.1007/s11910-011-0182-2.
  • Xi, Y., M. Yu, R. Godoy, G. Hatch, L. Poitras, and M. Ekker. 2011. Transgenic zebrafish expressing green fluorescent protein in dopaminergic neurons of the ventral diencephalon. Dev. Dynam. 240 (11):2539–47. doi:10.1002/dvdy.22742.
  • Xu, Y., B.-S. Ku, H.-Y. Yao, Y.-H. Lin, X. Ma, Y.-H. Zhang, and X.-J. Li. 2005. The effects of curcumin on depressive-like behaviors in mice. Eur. J. Pharmacol. 518 (1):40–46. doi:10.1016/j.ejphar.2005.06.002.
  • Zhang, S., R. Wang, and G. Wang. 2019. Impact of dopamine oxidation on dopaminergic neurodegeneration. ACS Chem. Neurosci. 10 (2):945–53. doi:10.1021/acschemneuro.8b00454.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.