293
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Use of Experimental Factorial Design for Optimization of Hexavalent Chromium Removal by a Bacterial Consortium: Soil Microcosm Bioremediation

, , , , &

References

  • Abdelnasser, S.S. I., El-Tayeb, M.A., El Badawi, Y.B., and Al-Salamah, A.A. 2011. Bioreduction of Cr (VI) by potent novel chromate resistant alkaliphilic Bacillus sp. strain KSUCr5 isolated from hypersaline soda lakes. Afr. J. Biotech. 37, 7207–7218.
  • Bachmanna, R.T., Wiemken, A.B., Tengkiatb, M., and Wilichowskic, M. 2010. Feasibility study on the recovery of hexavalent chromium from a simulated electroplating effluent using Alamine 336 and refined palm oil. Sep. Purif. Tech. 75, 303–309.
  • Basu, M., Bhattacharya, S., and Paul Bull, A.K. 1997. Isolation and characterization of chromium-resistant bacteria from tannery effluents. Environ. Contam. Toxicol. 58, 535–542.
  • Berekaa, M.M., Abdel-Fattah, Y.R., and Hussein, H.M. 2006. Modeling of chromium (VI) accumulation in Gordonia polyisoprenivorans VH2 using response surface methodology. Biotechnology. 5(1), 5–11.
  • Bertani, G. 1951. Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J. Bacteriol. 62, 293–300.
  • Carmona, M.E. R., da Silva, M.A. P., and Leite, S.G. F. 2005. Biosorption of chromium using factorial experimental design. Proc. Biochem. 40, 779–788.
  • Chatterjee, S., Sau, G.B., and Mukherjee, S.K. 2009. Plant growth promotion by a hexavalent chromium reducing bacterial strain, Cellulosimicrobium cellulans KUCr3. World J. Microbiol. Biotechnol. 25, 1829–1836.
  • Chrysochoou, M., Zhang, X., and Amador, J.A. 2013. Aerobic Cr(VI) reduction by bacteria in culture and soil conditions. Soil Sed. Contam. 22(3), 273–287.
  • Coykendall, K. 2011. Competition and allelopathy in invasive Lespedeza cuneata. Proceedings of the 7th Annual GRASP Symposium, May 4, 2011, Wichita State University, Wichita, KS.
  • Dermou, E., Velissariou, A., Xenos, D., and Vayenas, D.V. 2005. Biological removal of hexavalent chromium from industrial waste. CEST. 271–276.
  • El-Kassas, H.Y. and El-Taher, E.M. 2009. Optimization of batch process parameters by response surface methodology for mycoremediation of chrome-VI by a chromium resistant strain of marine Trichoderma Viride. American-Eurasian J. Agric. & Environ. Sci. 5(5), 676–681.
  • Farag, S. and Zaki, S. 2010. Identification of bacterial strains from tannery effluent and reduction of hexavalent chromium. J. Envir. Biology. 5, 877–882.
  • He, Z., Gao, F., Sha, T., Hu, Y., and He, C. 2009. Isolation and characterization of a Cr(VI)-reduction Ochrobactrum sp. strain CSCr-3 from chromium landfill. J. Haz. Mater. 163, 869–873.
  • Jeyasingh, J. and Ligy, P. 2005. Bioremediation of chromium contaminated soil: Optimization of operating parameters under laboratory conditions. J. Haz. Mater. B 118, 113–120.
  • Kader, J., Sannasi, P., Othman, O., Ismail, B.S., and Salmijah, S. 2007. Removal of Cr(VI) from aqueous solutions by growing and non-growing populations of environmental bacterial consortia. Glob. J. Environ. Res. 1(1), 12–17.
  • Kranner, I. and Colville, L. 2011. Metals and seeds: Biochemical and molecular implications and their significance for seed germination. Environ. Exp. Bot. 72, 93–105.
  • Lafuente, R., Maym-Gatel, X., Mas-Castellaa, J., and Guerrero, R. 1996. Influence of environmental factors on plasmid transfer in soil microcosms. Cur. Microb. 32, 213–220.
  • MA. 200–CrHex 1.1; 2008. Méthode d’Analyse: Détermination du Chrome Hexavalent: Méthode Colorimétrique, Centre d’Expertise en Analyse Environnementale du Québec, Canada.
  • Ma, Z., Zhu, W., Lon, H., Chai, L., and Wang, Q. 2007. Chromate reduction by resting cells of Achromobacter sp. Ch-1 under aerobic conditions. Proc. Biochem. 42, 1028–1032.
  • Mabrouk, M.E. M. 2008. Statistical optimization of medium components for chromate reduction by halophilic Streptomyces sp. MS-2. Afr. J. Micro. Res. 2, 103–109.
  • Mangaiyarkaras, M.S. S. and Vincenta, S.J. 2011. Bioreduction of Cr(VI) by alkaliphilic Bacillus subtilis and interaction of the membrane groups. Saud. J. Biol. 18(2), 157–167.
  • Mihoub, A., Chaoui, A., and El Ferjani, E. 2005. Changements biochimiques induits par le cadmium et le cuivre au cours de la germination des graines de petit pois (Pisum sativum L.). C. R. Biologies. 328, 33–41.
  • Montgomery, D.C. 1997. Design and Analysis of Experiments, 4th ed., John Wiley and Sons, New York.
  • Nasseri, S., Mazaheri Assadi, M., Noori Sepehr, M., Rostami, K., Shariat, M., and Nadafi K. 2002. Chromium removal from tanning effluent using biomass of Aspergillus oryzae. Pak. J. Biol. Sci. 5(10), 1056–1059.
  • Nurfadilah, M. and Wan Azlina, A. 2010. Application of response surface methodology (RSM) for optimizing removal of Cr(VI) wastewater using Cr(VI)-reducing biofilm systems. Proceedings of Regional Annual Fundamental Science Seminar, Malaysia, 2010.
  • Pokhrel, D. and Viraraghvan, T. 2006. Arsenic removal from aqueous solution by iron oxide coated fungal biomass: A factorial design analysis. Water. Air. Soil. Pollut. 173, 195–208.
  • Prigione, V., Zerlottin, M., Refosco, D., Tigini, V., Anastasi, A., and Varese, G.C. 2009. Bioresource chromium removal from a real tanning effluent by autochthonous and allochthonous fungi. Technology. 100, 2770–2776.
  • Ravikumar, K., Krishnan, S., Ramalingam, S., and Balu, K. 2007. Application of response surface methodology to optimize the process variable for reactive red and acid brown dye removal using a novel adsorbent. Dyes. Pigments. 72, 66–74.
  • Sannasi, P., Kader, J., Ismail, B.S., and Salmijah, S. 2006. Sorption of Cr(VI), Cu(II) and Pb(II) by growing and non-growing cells of a bacterial consortium. Bioresource Technol. 97, 740–747.
  • Shanker, A.K., Cervantes, C., Loza-Tavera, H., and Avudainayagam, S. 2005. Chromium toxicity in plants. Envir. Inter. 31, 739–753.
  • Sikander, S. and Hasnain, S. 2007. Reduction of toxic hexavalent chromium by Ochrobactrum intermedium strain SDCr-5 stimulated by heavy metals. Bioresource Technol. 9, 8340–344.
  • Silva, B., Figueiredo, H., Neves, I.C., and Tavares, T. 2009. The role of pH on Cr(VI) reduction and removal by Arthrobacter Viscosus. Int. J. Chem. Biomol. Eng. 2, 100–103.
  • Sivasamy, S.N. 1988. Effect of tannery effluents and tanning on soil fungi. J. Environ. Biol. 9, 61–67.
  • Somasundaram, V., Ligy, P., and Bhallamudi, S.M. 2009. Experimental and mathematical modeling studies on Cr(VI) reduction by CRB, SRB and IRB, individually and in combination. J. Haz. Mater. 172(2–3), 606–617.
  • Song, J., Townsend, T., Solo-Gabrieleb, H., and Jang, Y.C. 2006. Hexavalent chromium reduction in soils contaminated with chromated copper arsenate preservative. Soil Sed. Contam. 15, 387–399.
  • Stewart, D.I., Burke, I.T., and Mortimer, R.J. G. 2007. Stimulation of microbially mediated chromate reduction in alkaline soil-water systems. Geomicrobiol. J. 4, 655–669.
  • Sultan, S. and Hasnain, S. 2007. Reduction of toxic hexavalent chromium by Ochrobactrum intermedium strain SDCr-5 stimulated by heavy metals. Bioresource Technol. 98, 340–344.
  • Tahri Joutey, N., Bahafid, W., Sayel, H., and El Ghachtouli, N. 2013. Phytotoxic effect of hexavalent chromium on germination and seedling growth of seeds of different plant species. J. Agric. Technol. 9(2), 293–304.
  • Tahri Joutey, N., Bahafid, W., Sayel, H., El Abed, S., and El Ghachtouli, N. 2011. Remediation of hexavalent chromium by consortia of indigenous bacteria from tannery waste-contaminated biotopes in Fez, Morocco. Int. J. Environ. Stud. 1–12.
  • Tarangini, K., Kumar, A., Satpathy G.R., and Sangal, V.K. 2009. Statistical optimization of process parameters for Cr(VI) biosorption onto mixed cultures of Pseudomonas aeruginosa and Bacillus subtilis. Clean. 37 (4–5), 319–327.
  • Urvashi, T., Parikh, R., Shouche, Y., and Madamwar, D. 2006. Hexavalent chromium reduction by Providencia sp. Proc. Biochem. 41, 1332–1337.
  • Venil, C.K., Mohan, V., and Lakshmanaperumalsamy, P. 2011. Optimization of chromium removal by the indigenous bacterium Bacillus spp. REP02 using the response surface methodology. ISRN Microbiology 2011: 951694.
  • Zahoor, A. and Rehman, A. 2009. Isolation of Cr(VI) reducing bacteria from industrial effluents and their potential use in bioremediation of chromium containing wastewater. J. Environ. Sci. 21, 814–820.
  • Zhang, K. and Li, F. 2011. Isolation and characterization of a chromium-resistant bacterium Serratia sp. Cr-10 from a chromate-contaminated site. Appl. Microbiol. Biotech. 90, 1163–1169.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.