207
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

Use of Rice Husk as Bulking Agent in Bioremediation of Automobile Gas Oil Impinged Agricultural Soil

, , , &

References

  • Achuba, F. I., and Okoh, P. N. 2014. Effect of petroleum products on soil catalase and dehydrogenase activities. Open J. Soil Sci. 4, 399–406.
  • Adesodun, J. K., and Mbagwu, J. S. C. 2008. Biodegradation of waste- lubricating petroleum oil in a tropical alfisol as mediated by animal droppings. Bioresour. Technol. 99, 5659–5665.
  • Amim, J., Petri, D. F. S., Maia, F. C. B., Miranda, P. B. 2010. Ultrathin cellulose ester films: preparation, characterization and protein immobilization. Quím Nova. 33, 2064–2069.
  • American Public Health Association. 2005. Standard method for total organic carbon analysis of soil D 422–63 (1972). 2005 Annual Book of APHA Standards 04.08:95–110. American Public Health for Testing Materials.
  • American Society for Testing and Materials, 1985. Standard test method for particle-size analysis of soils D 422–63 (1972). 1985 Annual Book of ASTM Standards 04.08:117–127. American Society for Testing Materials, Philadelphia.
  • Bacosa, H. P., and Inoue, C. 2015. Polycyclic aromatic hydrocarbons(PAHs) biodegradation potential and diversity of microbial consortia enriched from tsunami sediments in Miyagi. J. Hazard. Mater. 283, 689–697.
  • Bacosa, H. P., Erdner, D. L., and Liu, Z. 2015a. Differentiating the roles of photooxidation and biodegradation in the weathering of Light Louisiana Sweet crude oil in surface water from the Deepwater Horizon site. Mar. Pollut. Bull. 5, 265–272.
  • Bacosa, H. P., Liu, Z., and Erdner, D. L. 2015b. Natural sunlight shapes crude oil-degrading bacterial communities in Northern Gulf of Mexico surface waters. Front. Microbiol. doi: 10.3389/fmicb.2015.01325.
  • Bacosa, H., Suto, K., and Inoue, C. 2010. Preferential degradation of aromatic hydrocarbons in kerosene by a microbial consortium. Int. Biodeter. Biodegr. 64, 702–710.
  • Bacosa, H., Suto, K., and Inoue, C. 2011. Preferential utilization of petroleum oil hydrocarbon components by microbial consortia reflects degradation pattern in aliphatic-aromatic hydrocarbon binary mixtures. World J. Microbiol. Biotechnol. 27, 1109–1117.
  • Bacosa, H. P., Suto, K., and Inoue, C. 2012. Bacterial community dynamics during the preferential degradation of aromatic hydrocarbons by a microbial consortium. Int. Biodeterior. Biodegrad. 74, 109–115.
  • Bacosa, H. P., Suto, K., and Inoue, C. 2013. Degradation potential and microbial community structure of heavy oil-enriched microbial consortia from mangrove sediments in Okinawa, Japan. J. Environ. Sci. Health A. 48, 1–12.
  • Bacosa, H. P., Thyng, K., Plunkett, S., Erdner, D., and Liu, Z. 2016. The tarballs on Texas beaches following the 2014 Texas City “Y” Spill: Modeling, chemical, and microbiological studies. Mar. Pollut Bull. http://dx.doi.org/10.1016/j.marpolbul.2016.05.076.
  • Barbee, G. C., Brown, K. W., Thomas, J. C., Donelley, K. C., and Murray, H. E. 2000. Mutagenic activity (Ames test) of wood-preserving waste sludge applied to soil. Bull. Environ Contam Toxicol. 57, 54–62.
  • Bento, F. M., Camargo, F. A. O., Okeke, B. C., and Frankenberger, W. T. 2005. Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation. Bioresour. Technol. 96, 1049–1055.
  • Chemlal, R., Abdi, N., Lounici, H., Pauss, A., and Mameri, N. 2013. Modelling and qualitative study of biodegradation using biopile process in sandy soil. Int. Biodeterior. Biodegrad. 78, 43–48.
  • Chen, M., Xu, P., Zeng, G., Chuang, Y. D., and Zhang, J. 2015. Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: Applications, microbes and future research needs. Biotechnol. Adv. 33, 745–755.
  • Covizzi, L. G., Giese, E. C., Gomes, E., Dekker, R. F. H., and Silva, R. 2007. Immobilization of microbial cells and their biotechnological applications. Semina: Ciências Exatas e Tecnológicas. 28, 143–160.
  • Cunningham, C. J., Ivshina, I. B., Lozinsky, V. I., Kuyukina, M. S., and Philp, J. C. 2004. Bioremediation of diesel –contaminated soil by microorganisms immobilized in polyvinyl alcohol. Int. Biodeterior. Biodegrad. 54, 167–174.
  • Dervakos, G. A., and Webb, C. 1991. On the merits of viable-cell immobilization. Biotechnol Adv. 9, 559–612.
  • Ezekoye, C. C., Amakoromo, E. R., and Ibiene, A. A. 2015. Bioremediation of hydrocarbon polluted mangrove swamp soil from the Niger delta using organic and inorganic nutrients. Brit. Biotechnol. J. 2, 62–78.
  • Freeman, A., and Lilly, M. D. 1998. Effect of processing parameters on the feasibility and operational stability of immobilized viable microbial cells. Enzyme Microb. Technol. 23, 335–345.
  • Golueke, C. G. 1996. Book review: Biotechnology industrial waste treatment and bioremediation (Robert F. Hickey and Gretchen Smith, Eds.), Lewis Publishers, Boca Raton/New York. Waste Manag Res. 1, 65–71.
  • Koukoutas, Y., Bekatorou, A., Banat, I. M., Marchant, R., Koutinas, A. A. 2004. Immobilization technologies and support materials suitable in alcohol beverages production: a review. Food Microbiol. 21, 377–397.
  • Namkoong, W., Hwang, E. Y., Park, J. S., and Choi, J. Y. 2002. Bioremediation of diesel contaminated soil with composting. Environ. Pollut. 119, 23–31.
  • Nwankwegu, A. S., Ikpe, E. M., Chukwura, E. I., Irondi, C. R., and Obika, E. I. 2016b. Ex Situ biodegradation of crude oil using bacterial isolates from palm oil mill effluent. Amer. J. Life Sci. 4(3), 71–75.
  • Nwankwegu, A. S., Orji, M. U., and Onwosi, C. O. 2016a. Studies on organic and in-organic biostimulants in bioremediation of diesel-contaminated arable soil. Chemosphere. 162, 148–156.
  • Obire, O., and Anyanwu, E. C. 2008. Impact of various concentrations of crude oil on fungal populations of soil. Int. J. Environ. Sci. Technol. 2, 211–218.
  • Okafor, U. C., and Nwankwegu, A. S. 2016. Effect of woodchips on bioremediation of crude oil-polluted soil. Brit. Microbiol. Res. J. 15(4), 1–7.
  • Onwurah, I. N. E. 2003. An integrated environmental biotechnology for enhanced bioremediation of crude oil contaminated agricultural land. Bio. Res. 1, 51–60.
  • Onwurah, I. N. E., and Alumanah, E. E. 2005. Integration of biodegradation half-life model and oil toxicity model into a diagnostic tool for assessing biorernediation technology. Indus Biotechnol. 1, 292–296.
  • Onwurah, I. N. E., Ogugua, V. N., and Otitoju, O. F. 2006. Integrated environmental biotechnology-oriented framework for solid waste management and control in Nigeria. Int. J. Environ. Waste manag. 1, 94–104.
  • Orji, F. A., Ibiene, A. A., and Okerentugba, P. O. 2013. Bioremediation of petroleum hydrocarbon-polluted mangrove swamps using nutrient formula produced from water hyacint (Eicchornia crassipes). Am. J. Environ. Sci. 9, 348–366.
  • Orji, F. A., Ibiene, A. A., and Ugbogu, U. C. 2012. Petroleum hydrocarbon pollution of mangrove swamps: The promises of remediation by enhanced natural attenuation. Am. J. Agric. Biol. Sci. 7, 207–216.
  • Rhykerd, R. I., Crews, B., Mcinnes, K. J., and Weaver, R. W. 1999. Impact of bulking agents, forced aeration, and tillage on remediation of oil-contaminated soil. Bioresour. Technol. 67, 279–285.
  • Ritter, W. F., and Scarborough, R. W. 1995. A review of bioremediation of contaminated soils and ground water. J. Environ Sci Health. A. 30, 323–330.
  • Saari, E., Perämäki, P., and Jalonen, J. 2007. Effect of sample matrix on the determination of total petroleum hydrocarbons (TPH) in soil by gas chromatography-flame ionization detection. Microchem. J. 87, 113–118.
  • Sarkar, D., Michael, F., Rupali, D., and Stuart, B. 2005. Bioremediation of petroleum hydrocarbon in contaminated soils: comparison of biosolids addition, carbon supplementation and monitored natural attenuation. Environ. Pollut. 136, 187–195.
  • Steliga, T., Jakubowicz, P., and Kapusta, P. 2012. Changes in toxicity during in situ bioremediation of weathered drill wastes contaminated with petroleum hydrocarbons. Bioresour. Technol. 125, 1–10.
  • Subhani, A., Changyong, H., Zhengmiao, Y., Min, L., and El-ghamry, A. 2001. Impact of soil environment and agronomic practices on microbial/dehydrogenase enzyme activity in soil. Pakist. J. Biol. Sci. 4, 333–388.
  • Wang, Y., Han, L., Shi, H., and Qian, Y. 2000. Biodegradation of quinolone by gel immobilized Burholderia sp. Chemosphere. 44, 1041–1046.
  • Watson, D. B. 2003. Natural and Accelerated Bioremediation Research (NABIR) Field Research Center (FRC) Management Plan. NABIR. 1, 1–68.
  • Yeung, P. Y., Johnson, R. L., and Xu, J. G. 1997. Bioremediation of petroleum hydrocarbons in the soil as affected by heating and forced aeration. J. Environ. Qual. 26, 1511–1576.
  • Zhang, N., He, X., Gao, Y., Li, Y., Wang, H., Ma, D., Zhang, R., and Yang, S. 2010. Pedogenic carbonate and soil dehydrogenase activity in response to soil organic matter in artemisia ordosica community. Pedosphere. 20, 229–235.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.