210
Views
0
CrossRef citations to date
0
Altmetric
Articles

Spectrochemical Analytical Follow up of Phytoremediation of Oil-Contaminated Soil

, Dr, , Dr, , Dr & , Prof. Dr

References

  • Abdallah, R. I., Khalil, N. M., and Roushdie, M. I. 2015. Monitoring of pollution in egyptian red sea. Egyptian J. Petroleum. 24, 59–70. doi:10.1016/j.ejpe.2015.02.006.
  • Abdelhamid, M., Grassini, S., Angellini, E., and Ingo, G. M., Harith, M. A. 2010. Depth profiling of metallic artifacts adopting laser induced breakdown spectroscopy. Spectrochim. Acta B., 2010. 65, 695–701. doi:10.1016/j.sab.2010.03.017.
  • Abdel- Salam, Z. A., Galmed, A. H., Tognoni, E., and Harith, M. A. 2007. Estimation of calcified tissues hardness via calcium and magnesium ionic to atomic line intensity ratio in laser induced breakdown spectra. Spectrochim. Acta B. 62, 1343–1347. doi:10.1016/j.sab.2007.10.033.
  • Anderson, B., Bassuah, P. K. B., and Tetteh, J. P. 2004. Using violet laser-induced chlorophyll fluorescence emission spectra for crop yield assessment of cowpea (Vigna unguiculata (L) Walp) varieties. Meas. Sci. Technol. 15, 1255–1265. doi:10.1088/0957-0233/15/7/005.
  • Baba, S. A., and Malik, S A. 2015. Determination of total phenolic and flavonoid content, antimicrobial and antioxidant activity of a root extract of Arisaema jacquemontii Blume. J. of Taibah Uni for Sci. 9, 449–454. doi:10.1016/j.jtusci.2014.11.001.
  • Banks, M. K., and Schultz, K.E. 2005. Comparison of plants for germination toxicity tests in petroleum-contaminated soils. Water Air Soil Poll. 167, 211–219. doi:10.1007/s11270-005-8553-4.
  • Bashat, H. M. 2003. The 4th International Conference and Exhibition for Environmental Technologies Management and Funding, Cairo, Egypt.
  • Besalatpour, A., Khoshgoftarmanesh, A. H., Hajabbasi M. A., and Afyuni, M. 2008. Germination and growth of selected plants in a petroleum contaminated calcareous soil. Soil Sediment Contam. 17, 665–676. doi:10.1080/15320380802425113.
  • Besalatpour, A. A., Hajabbasi, M. A., and Khoshgoftarmanesh, A. H. 2010. Reclamation of a petroleum-contaminated calcareous soil using hytostimulation. Soil Sediment Contam. 19, 547–559. doi:10.1080/15320383.2010.499920.
  • Buschmann, C., and Lichtenthaler, H. 1998. Principles and characteristics of multicolour fluorescence imaging of plants. J. Plant Physiol. 152, 297–314. doi:10.1016/S0176-1617(98)80144-2.
  • Chaerle, L., Hagenbeek, F., Vanrobaeys, V., and Van Der Straeten, D. 2007. Early detection of nutrient and biotic stress in Phaseolus vulgaris. Int. J. Remote Sens. 28, 3479–3492. doi:10.1080/01431160601024259.
  • Chappelle, E. W., Wood, F. M., Jr, McMurtrey, III, J. E., and Newcomb, W. W. 1984. Laser-induced fluorescence of green plants: A technique for the remote detection of plant stress and species differentiation. Applied Optics. 23(13), 4–138.
  • Chen, H. T., and Cutright, J. 2002. The interactive effects of chelator, fertilizer and rhizobacteria for enhancing phytoremediation of heavy metal contaminated soil. Soils Sediments. 2, 203–221. doi:10.1007/BF02991040.
  • Cremers, D. A., and Radziemski, L. J. 2006. Handbook of Laser-Induced Breakdown Spectroscopy, England, John Wiley and Sons Ltd.
  • Cristiane, M. D. C., Liduino, V. S., Oliveira, F. J. S., and Sérvulo, E. F. C. 2014. Phytoremediation of soil multi-contaminated with hydrocarbons and heavy metals using sunflowers. Int. J Eng. Technol. 14, 1–6.
  • Cuñat, J., Fortes, F. J., Cabalín, L. M., Carrasco, F., Simón, M. D., and Laserna, J. J. 2008. Man-Portable laser-induced breakdown spectroscopy system for in situ characterization of karstic formations. Appl Spectrosc., 2008. 62, 1250–1255.
  • Dewis, J., and Freitas, F. 1970. Handbook of Physical and chemical methods of soil and water analysis. Food and Agriculture Organization of the United Nations.
  • Dibble, J. T., and Bartha, R. 1979. Effect of environmental parameters on the biodegradation of oil sludge. Appl Environ Microbiol. 37, 729–739.
  • Eaton, A. D., Clesceri, L. S., Greenberg, A. E., and Franson Mary, A. H. 1998. Standard methods for the examination of water and wastewater, Washington DC, American Public Health Association.
  • Gaskin, S., Soole, K., and Bentham, R. 2008. Screening of Australian native grasses for rhizoremediation of aliphatic hydrocarbon-contaminated soil. Int. J. Phytoremediat. 10, 378–389. doi:10.1080/15226510802100465.
  • Gee, G. W., and Bauder, J. W. 1986. Particle-size analysis. In: Methods of soil analysis, Part 1. Agronomy Monograph, pp. 383–411 Klute A editor, USA, American Society of America.
  • Gill, S. S., and Tuteja, N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48, 909–930. doi:10.1016/j.plaphy.2010.08.016.
  • Govindjee, E. 1995. Chlorophyll a fluorescence. Aust. J. Plant Physiol. 22, 131–160. doi:10.1071/PP9950131.
  • Harder, E. 2004. Bioremediation of engine oil, Dallas, Texas, Little Flower Academy.
  • Hassan, M., Sighicelli, M., Lai, A., Colao, F., Ahmed, A. H. H., Fantoni, R., and Harith, M. A. 2008. Studying the enhanced phytoremediation of lead contaminated soils via laser induced breakdown spectroscopy. Spectrochim. Acta Part B. 63, 1225–1229. doi:10.1016/j.sab.2008.09.015.
  • Hassan, M., Abdelhamid, M., Hanafy, A. H., Fantoni R., and Harith, M. A. 2011. Laser monitoring of phytoextraction enhancement of lead contaminated soil adopting EDTA and EDDS. AIP Conference Proceedings. 1380, 93–100.
  • Huang, J. K., Hu, R. F., Rozelle, S., and Pray, C. 2005. Insect-resistant GM rice in farmers' fields: Assessing productivity and health effects in China. Sci. 308, 688–690. doi:10.1126/science.1108972.
  • Ismail, M. A., Cristoforetti, G., Legnaioli, S., Pardini, L., Palleschi, V., Salvetti, A., Tognoni, E., and Harith, M. A. 2006. Comparison of detection limits, for two metallic matrices, of laser-induced breakdown spectroscopy in the single and double-pulse configurations Anal. Bional. Chem. 385, 316–325. doi:10.1007/s00216-006-0363-z.
  • Kim, J. S., Kang, S. H., Min, K. A., Cho, K. S., and Lee, I. S. 2006. Rhizosphere microbial activity during phytoremediation of diesel-contaminated soil. J. Environ. Sci. Health Part A. 41, 2503–2516 doi:10.1080/10934520600927658.
  • Kötschau, A., Büchel, G., Einax, J. W., Meissner, R., von Tümpling, W., and Merten, D. 2014. Element pattern recognition and classification in sunflowers (Helianthus annuus) grown on contaminated and non-contaminated soil. Microchemic. J. 114, 164–174. doi:10.1016/j.microc.2013.12.006.
  • Lazic, V., Jovicevic, S., Fantoni, R., and Colao, F. 2007. Efficient plasma and bubble generation underwater by an optimized laser excitation and its application for liquid analyses by laser-induced breakdown spectroscopy. Spectrochim Acta B. 62, 1433–1442. doi:10.1016/j.sab.2007.10.019.
  • Lee, K., Wohlgeschaffen, G., Cobanli, S. E., Venosa, A. D., Suidan, M. T., and Garcia-Blanco, S. 2003. The International Oil Spill conference on Bioremediation and Natural Recovery.
  • Maila, M. P., and Cloete, T. A. 2002. Germination of Lepidium sativum as a method to evaluate polycyclic aromatic hydrocarbons (PAHs) removal from contaminated soil. Int. Biodeterior Biodegradation. 50, 107–113. doi:10.1016/S0964-8305(02)00059-8.
  • Marin, J. A., Hernandez, T., and Garcia, C. 2005. Bioremediation of oil refinery sludge by landfarming in semiarid conditions: Influence on soil microbial activity. Environ Res. 98, 185–195. doi:10.1016/j.envres.2004.06.005.
  • Mclean, O. E. 1982. Methods of soil analysis Part 2. Agronomy Monograph, USA, American Society of America.
  • Miya R. K., and Firestone, M. K. 2001. Enhanced phenanthrene biodegradation in soil by slender oat root exudates and root debris. J. Environ. Qual. 30, 1911–1918 doi:10.2134/jeq2001.1911.
  • Moosavi, S. G., and Seghatoleslami, M. J. 2013. Advance in agriculture and biology phytoremediation: A review. Adv. Agric. Biol. 1, 5–11.
  • Nassef, O. A., Ahmed, H. E., and Harith, M. A. 2016. Surface and stratigraphic elemental analysis of an ancient Egyptian cartonnage using Laser-Induced Breakdown Spectroscopy (LIBS). Anal. Methods, 2016. 8, 7096–7106.
  • Noori, A. S., Maivan, H. Z., and Alaie, E. 2012. Changes in total phenol and flavonoid contents in Chrysanthemum leucanthemum under crude oil contamination J. Env. Biol. 6, 3057–3064.
  • Ogbo, E. M. 2009. Effects of diesel fuel contamination on seed germination of four crop plants – Arachis hypogaea,Vigna unguiculata, Sorghum bicolor and Zea mays. Afr. J. Biotechnol. 8, 250–253.
  • Peng, S., Zhou, Q., Cai, Z., and Zhang, Z., 2009. Phytoremediation of petroleum contaminated soils by Mirabilis jalapa L. in a greenhouse plot experiment. J. Hazard Mater. 168, 1490–1496. doi:10.1016/j.jhazmat.2009.03.036.
  • Rezek, J., Wiesche, C., Mackova, M., Zadrazil, F., and Macek, T. 2008. The effect of ryegrass (Lolium perenne) on decrease of PAH content in long term contaminated soil. Chemosphere, 2008. 70, 1603–1608.
  • Renu, M., Prasadc, S. M., and Gopala, R. 2008. LIF technique offers the potential for the detection of cadmium-induced alteration in photosynthetic activities of Zea mays L. J. Photochem Photobiol. 9, 29–35. doi:10.1016/j.jphotochemrev.2008.03.001.
  • Reypour, F., Soleimanpour, S., and Zarinkamar, F. 2013. Effect of diesel fuel contaminated soil on the germination and the growth of festuca arundinacea. Research. J. Chem. Environ. Sci. 2, 37–41.
  • Sarkar, D., Ferguson, M., Datta, R., and Birnbaum, S. 2005. Bioremediation of petroleum hydrocarbons in contaminated soils: comparison of biosolids addition, carbon supplementation, and monitored natural attenuation, Environ. Pollut. 136, 187–195. doi:10.1016/j.envpol.2004.09.025.
  • Shahsavari, E., Adetutu, E. M., and Ball, A. S., 2015. Phyto-remediation and Necro-phyto-remediation of Petrogenic Hydrocarbon-Contaminated Soils. In: Phyto-remediation Management of Environmental Contaminants, pp. 321–334 (Switzerland): Springer.
  • Singh, J. P., Yueh, F. Y., Zhangand, H. S., and Cook, R. L. 2005. Study of laser induced breakdown spectroscopy as a process monitor and control tool for hazardous waste remediation. Process Control Qual. 10, 247–258.
  • Tam, N. F., and Wong, Y. S. 2008. Effectiveness of bacterial inoculum and mangrove plants on remediation of sediment contaminated with polycyclic aromatic hydrocarbons Mar. Pollut. Bull. 57, 716–726. doi:10.1016/j.marpolbul.2008.02.029.
  • Tejeda-Agredano, M. C., Gallego, S., Vila, J., Grifoll, M., Ortega-Calvo, J. J., and Cantos, M. 2013. Influence of the sunflower rhizosphere on the biodegradation of PAHs in soil. Soil Biol. Biochem. 57, 830–840. doi:10.1016/j.soilbio.2012.08.008.
  • Wilson, S. C., and Jones, K. C. 1993. Bioremediation of soil contaminated with polynuclear aromatic hydrocarbons (PAHs): a review. Environ. Pollut. 81, 229–249. doi:10.1016/0269-7491(93)90206-4.
  • Zhou, X. B., Cébron, A., Béguiristain, T., and Leyval, C. 2009. Water and phosphorus content affect PAH dissipation in spiked soil planted with mycorrhizal alfalfa and tall fescue. Chemosphere. 77, 709–713. doi:10.1016/j.chemosphere.2009.08.050.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.